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Abstract—As Automated Driving Systems (ADSs) continue
to expand into the public sphere, so too must our efforts to
sufficiently validate their safety. Given the wide range of scenarios
over which ADSs must operate and the inherent dangers in these
scenarios, developers often rely on simulation testing to exercise
the system. However, the well-documented simulation-reality gap
limits the transfer of results from simulation testing to real world
operation, hindering the ability to build sufficient assurance cases
based on validation in simulation alone. This is a fundamental
issue in the construct validity of simulation-based methods for
validation of ADS systems. Recent efforts have sought to decrease
the simulation-reality gap through improved simulation fidelity
and developing methods for generating synthetic data from real
data. However, these efforts do not provide a method to assure
the construct validity achieved by these improvements. Current
methods to measure the distance between simulation and reality
for ADS validation are insufficient for the task as they provide
no basis on which to judge the validity of the simulated tests.
For simulation testing to be trustworthy, we require methods to
reason about this construct validity; i.e., whether and how much
a given test or technique will yield failures that transfer to real-
world deployment, or miss failures because of the lack of fidelity.
We describe the continuing challenges in this domain, provide
outlines of what is required of a solution, and set directions for
future work in the community to this end.

Index Terms—autonomous vehicles, validation, simulation test-
ing, realism metrics

I. INTRODUCTION

Automated Driving Systems (ADSs) promise to provide
myriad benefits from increased safety, to improved efficiency,
to broadened access to transportation. However, to meet these
goals, ADSs must be rigorously validated over the rich space
of real-world scenarios they will encounter to ensure they are
sufficiently safe. Testing edge cases at the boundary of perfor-
mance is vital to assure the correctness of safety-critical ADSs.
Such edge cases—for example, scenarios where super-human
sensing, perception, reaction, and maneuverability enable an
ADS to avoid a collision that a human driver could not—are
inherently unsafe to validate in the real world. To this end,
simulation testing and methods that generate synthetic data
for testing have become an integral part of the ADS validation
pipeline due to their physical safety, controllability, speed, and
cost. However, as researchers continue to develop and employ
simulation and synthetic input testing, we need methods to
understand the construct validity of these tests with respect
to the real world: do these tests yield insights that transfer
to real-world deployment?
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We know that simulation does not match reality due to the
well-documented simulation-reality gap which impacts many
aspects of operating ADSs in simulation [1]-[3]. Simulation
uses environment models that abstract and approximate real-
world objects, leading to lower-fidelity digital twins [4].
Simulation uses models to approximate physical processes,
e.g. ground friction or deformation, narrowing the range of
application [1], [4]. Simulation approximates the sensor input
collection process and struggles to faithfully recreate sensor
artifacts and noise [5]. Each of these differences contribute to
developers’ concerns about the construct validity of simulation
testing as a means to build a safety case for ADS real-world
deployment [1], leading ADS developers to retain real-world
deployment testing within their validation pipeline [6].

Yet we lack methods to measure such gaps between simula-
tion and reality to reason about the construct validity of such
testing efforts. Not only sensor inputs, but also actions and
their effect on system and world states are approximations.
Moreover, no space of digital simulations can span the space
of real-world situations.

What kind of gaps in realism are relevant, not to a human
but to an ADS? Does a particular test input demonstrate safety
or lack thereof for the system under test? Or is executing that
input a waste of resources as even if a failure is found it will
not translate to deployment? Is it possible to identify this a
priori to reason about construct validity? Without the ability
to answer these questions, we cannot build a reliable safety
assurance case through simulation testing.

To develop a robust ADS testing infrastructure that can
include simulation and synthetic test data, we must answer:

1) What does it mean for an input to be realistic?

2) What are necessary and sufficient realism conditions for
a test to substantiate an ADS safety assurance case?

3) How can we measure, compute, and decide this necessity
and sufficiency?

4) How can this measurement be performed efficiently to
enable practical utility in the ADS testing infrastructure?

II. MOTIVATION

Recent research has attempted to close the simulation-reality
gap for sensed inputs on two fronts: by increasing the fidelity
of the simulation [3], [7]-[9], or by generating synthetic sensor
inputs from inputs collected from the real world [10]-[12].
In these works, improvement in closing the simulation-reality
gap is measured either through qualitative appeals to human



preference on how real an input feels [13], or by quantitative
metrics calibrated to the same human preference [14]-[18].
Many studies in this field have claimed sufficient realism,
i.e., construct validity, for ADS validation by relying on these
metrics, demonstrating that the average or minimum observed
metric value during the study is above a given threshold.
However, with a plethora of metrics that can be applied, prior
techniques are evaluated over a diverse set of metrics for
realism that prohibit comparison between techniques.

Further, absent a rigorous basis to connect these metrics
to the safety assurance case for an ADS, i.e. to reason about
construct validity, the techniques that rely on these metrics
for sufficiency may prove inadequate in transitioning to field
deployment: why should a score above X threshold for a
particular metric be considered real enough to assure against
future deployment failures of the ADS? Or it could be that a
given threshold for a given metric is sufficient and we simply
do not know that. While recent work has sought to empirically
calibrate metrics to ADS performance [19], all metrics studied
either did not consistently correlate with ADS performance, or
required fine-tuning the metric based on the particular usage
and data.

The lack of a common set of metrics for realism and a
connection between these metrics and the safety case for ADS
present a crucial obstacle for the field as new techniques are
developed. This impedes progress toward several important
research goals: test input generation techniques cannot be
validated with regard to their ability to transfer to real-world
deployment; test adequacy metrics cannot account for defi-
ciencies arising from the simulation-reality gap; and simulator
and synthetic test generation techniques have no sufficiency
criteria to judge when they have met their realism goals and
thus resources should instead be allocated elsewhere.

III. LOOKING FORWARD

We seek to call the community’s attention to the need
for further investigation to identify methods for measuring,
computing, and deciding the necessary and sufficient realism
required for the use of simulation for the ADS research and
testing pipeline, if such methods exist. A useful measure to
this end should enable reasoning about the sufficient realism
of a test input to form the basis for a valid test. This sets
several research questions for the community to address:

RQ1: What does it mean for an input, or set of inputs, to
be realistic to an ADS?

Building from the discussion in Section II, other research
fields have developed particular definitions and goals of re-
alism based on their intended application, e.g. improving the
end-user experience in virtual reality [20]. But we have no
basis to infer, from human perception of realism, that an
input is sufficiently realistic when presented to an ADS. The
community must align on a common definition and set of goals
for what it means to be sufficiently realistic as it pertains to
ADS validation to determine how this aligns with the construct
validity of ADS testing techniques. Only once a definition is

identified can we work toward methods to measure, compute,
and decide realism.

RQ2: What parameters are required for a realism measure:
the test input; the system under test (SUT); the types of
faults being investigated; the method of input generation; the
intended use as part of a broader assurance case?

To begin to understand the practicality of using realism
measures to decide the validity of an ADS test case, we must
first understand what parameters must be considered.

For example, the application of the realism measure may
depend on the sensor modality, e.g. camera versus LiDAR;
the type of fault being investigated, e.g. perception mis-
classification versus ADS collision; or the method of input
generation, e.g. simulation versus synthetic data generation
among other factors. Prior empirical evidence suggests that
existing simulators have demonstrated specialties, providing
relatively-higher fidelity in certain aspects, e.g. improved
handling of vehicle dynamics versus improved camera image
generation [3], [21]; a suitable realism metric should be able
to identify these differences and their applicability based on
the parameterization.

An overarching realism oracle for arbitrary inputs would
represent a substantial advance even beyond ADS validation,
with applications in image manipulation detection [22] and
deepfake detection [23]. However, as discussed, ADS test
validity rests on determining whether gaps in realism are
relevant fo the ADS. Specifically targeted approaches requiring
additional parameters can still provide utility. Even a measure
that can be used to decide if a given input from a particular
SUT targeting a particular failure-mode is realistic is useful.

RQ3: What realism measures are suitable to this task; do
different SUTs or testing paradigms require different measures
or can the community build an infrastructure around one
shared measure? If no shared realism measure exists, how
do we demonstrate validity?

The community has employed several measures claiming to
address realism in recent years. However, without a strong,
explicit argument about their connection to validity for ADS
testing, no clear consensus has emerged on which measures
are suitable. One of the existing measures may rise to the
front, or further research may be required to develop novel
measures, or identifying such a measure may be infeasible.
While a common measure or set of measures would advance
the community’s ability to compare research, the practical
utility for the end-user relies on demonstrating the construct
validity of their chosen test methodology. In the absence of a
suitable measure, the community must shift focus to develop-
ing alternatives for demonstrating this validity while building
comparable, extensible, and valid ADS testing methodologies.

RQ4: How can these methods be efficiently computed and
pragmatically integrated into the ADS research and testing
infrastructure?

Measures that meet the prior criteria would represent a
meaningful step forward in advancing research to this end.
However, as an applied exercise in validating an ADS, iden-
tified methods must be amenable to efficient computation.



Prior metrics are often computationally intensive to compute,
require tuning to the current task or data distribution, or rely on
machine-learned components [19]. These qualities can lead to
challenges such as aligning with existing software, hardware
limitations, or requiring particular developer expertise. Given
the complexity of the problem, this requirement must be
explicitly designed for within the ADS research and testing
infrastructure to permit practical use. User studies involving
ADS developers can help identify core integration require-
ments that would enable future adoption in practice.

IV. CONCLUSION

In this position paper we highlight the critical need for
a richer understanding of methods to reason about construct
validity of simulated/synthetic input generation-based methods
for ADS validation and its connection to realism and the
simulation-reality gap. We outline the shortcomings of existing
realism metrics that have been applied to this end and provide
the contours of what this unique paradigm requires of future
methods. We aim to begin the conversation in earnest for
the community to build a common understanding of how we
can create reliable methods for measuring realism or identify
other avenues to demonstrate validity for the ADS testing
pipeline. First steps in this direction may include compar-
ing ADS behavior under similar scenarios across different
simulators and real-world data to characterize the limitations
of current simulators and realism measurement approaches;
analyzing how ADS behaviors are affected by different input
perturbations to identify ADS-relevant aspects of realism;
and investigating whether, or under what conditions, existing
metrics correlate with observed ADS behavior. In this way, we
set the stage for future work in this direction toward building
a robust infrastructure for ADS research and testing.
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