
The SGSM Framework:1

Enabling the Specification and Monitor Synthesis of2

Safe Driving Properties through Scene Graphs3

Trey Woodliefa,∗, Felipe Toledoa, Sebastian Elbauma, Matthew B. Dwyera4

aUniversity of Virginia, 85 Engineer’s Way P.O. Box
400740, Charlottesville, 22904, VA, USA

Abstract5

As autonomous vehicles (AVs) become mainstream, assuring that they op-6

erate in accordance with safe driving properties becomes paramount. The7

ability to specify and monitor driving properties is at the center of such as-8

surance. Yet, the mismatch between the semantic space over which typical9

driving properties are asserted (e.g., vehicles, pedestrians) and the sensed10

inputs of AVs (e.g., images, point clouds) poses a significant assurance gap.11

Related efforts bypass this gap by either assuming that data at the right12

semantic level is available, or they develop bespoke methods for capturing13

such data. Our recent Scene Graph Safety Monitoring (SGSM) framework14

addresses this challenge by extracting scene graphs (SGs) from sensor inputs15

to capture the entities related to the AV, specifying driving properties us-16

ing a domain-specific language that enables building propositions over those17

graphs and composing them through temporal logic, and synthesizing mon-18

itors to detect property violations. Through this paper we further explain,19

formalize, analyze, and extend the SGSM framework, producing SGSM++.20

This extension is significant in that it incorporates the ability for the frame-21

work to encode the semantics of resetting a property violation, enabling the22

framework to count the quantity and duration of violations.23

∗Corresponding Author
Email addresses: adw8dm@virginia.edu (Trey Woodlief), ft8bn@virginia.edu

(Felipe Toledo), selbaum@virginia.edu (Sebastian Elbaum),
matthewbdwyer@virginia.edu (Matthew B. Dwyer)

Preprint submitted to Science of Computer Programming November 27, 2024

We implemented SGSM++ to monitor for violations of 9 properties of24

3 AVs from the CARLA Autonomous Driving Leaderboard, confirming the25

viability of the framework, which found that the AVs violated 71% of prop-26

erties during at least one test including almost 1400 unique violations over27

30 total test executions, with violations lasting up to 9.25 minutes. Artifact28

available at https://github.com/less-lab-uva/ExtendingSGSM.29

Keywords: runtime verification, autonomous vehicles, safe driving30

properties, scene graphs31

1. Introduction32

Autonomous vehicles (AVs) are quickly approaching wide-spread public-33

road deployment, with several companies already leveraging fleets of AV taxis34

in multiple US cities [1, 2]. However, deployments of full AV systems have led35

to multiple human and animal fatalities [3, 4, 5, 6, 7]. While some analysis36

from the companies deploying AVs suggests that they are involved in fewer37

collisions that pose risk of injury compared to human drivers [8, 9], we con-38

tinue to see AVs violate required driving behavior with grave consequences.39

Ideally, AVs would be deployed without latent faults due to extensive40

validation and verification [10, 11]. However, the inherent complexities of41

these systems and the long-tail of potential scenarios make it infeasible to42

provide complete and strong guarantees [12, 13]. These limitations have mo-43

tivated the use of runtime monitors that can evaluate compliance of safety44

specifications during deployment [12, 13, 14, 15, 16]. However, current moni-45

toring mechanisms are inadequate for checking driving behavior as they can-46

not account for the spatiotemporal distribution of entities (e.g., other vehi-47

cles, pedestrians, traffic signals) that may influence the AV driving behavior,48

and which can only be obtained from complex multi-dimensional sensors like49

camera and LiDAR. Alternatively, approaches that do account for driving50

behaviors do it through bespoke, handcrafted translation between the mon-51

itor’s input, e.g. sensor input, or internal system state, and the semantics52

of the safety specifications, limiting generalizability (as per related work in53

Section 2).54

A key challenge with developing monitors for the driving behavior of55

AVs is the mismatch between the semantic space over which typical road56

properties are asserted (e.g., cars, stop lights, intersections) and the input57

space of AVs which are typically in the form of sensed data (e.g., images,58

2

https://github.com/less-lab-uva/ExtendingSGSM

𝐋𝐓𝐋𝒇 𝐅𝐨𝐫𝐦𝐮𝐥𝐚 𝐟𝐨𝐫 𝜓9:

𝒢((¬ hasStop ∧ 𝒳 hasStop) → (𝒳(hasStop 𝒰 (isStopped ∨ 𝒢(hasStop)))))

𝐀𝐭𝐨𝐦𝐢𝐜 𝐏𝐫𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧𝐬:

hasStop: | relSet(Ego, isIn) ∩ relSet(stopLine, controlsTrafficOf) | > 0
isStopped: | filterByAttr(Ego, speed, λ x: x < ε) | = 1

S1

S2

S3 S4

¬ hasStop

¬ hasStop ∧
isStopped

hasStop hasStop ∧
isStopped

¬ hasStop ∧
¬ isStopped

¬ hasStop

True

hasStop ∧ isStopped

hasStop ∧
¬ isStopped

hasStop ∧
¬ isStopped

Figure 1: LTLf for safe driving property, Atomic Propositions over the image sensor data,
and DFA for property ψ9. Adapted from [18] for consistent notation.

radar, point clouds). As a motivating example, consider the following rule59

(ψ9 in Table 1) from the Virginia Driving Code § 46.2-821 “The driver of60

a vehicle approaching an intersection on a highway controlled by a stop sign61

shall, immediately before entering such intersection, stop at a clearly marked62

stop line [...]” [17]. Evaluating this property requires extracting information63

about road lanes, stopping signals, e.g. stop signs, painted markers, etc.,64

which lanes the signals affect, and if the vehicle occupies those lanes.65

To address these limitations we proposed utilizing scene graphs (SGs) to66

produce a framework for SG Safety Monitoring (SGSM) that enables the67

specification of driving properties for AVs and their automated synthesis as68

part of a system monitor. The approach builds on two key domain-specific69

components: 1) a spatial scene graph generator (SGG) that can extract rich70

scene representations from sensor inputs for the AV domain into SGs that71

abstract the entities related to the AV, and 2) a domain-specific language72

(DSL) that enables a developer to define programmable queries over the SG73

and compose the output of those queries as part of discrete metric temporal74

logic properties that can be monitored at runtime. Together, the SG and75

DSL offer a rich space to express common road properties relevant to AVs76

that can be automatically encoded as a runtime monitor.77

3

Ego
Vel: 10mph

Lane 2
isIn

Stop
Line

controlsTrafficOf

Ego
Vel: 7mph

Lane 2
isIn

Stop
Line

controlsTrafficOf

Ego
Vel: 8mph

Lane 2
isIn

Ego
Vel: 10mph

Lane 2
isIn

Time: 9.5s Time: 21s Time: 22s Time: 23s

…Camera
Image

Scene
Graph

StateAtomic Propositions
S2¬hasStop, ¬isStopped

StateAtomic Propositions
S3hasStop, ¬isStopped

StateAtomic Propositions
S3hasStop, ¬isStopped

StateAtomic Propositions
S4¬hasStop, ¬isStopped

Figure 2: AV (TCP) running an intersection without stopping from [18]. Top: AV Camera
Images. Middle: sub-SG for checking safety property. Bottom: Atomic Propositions
evaluated from SG and updated state of the DFA shown in Fig. 1 leading to violation.

Our initial work in this area identified SGs as a useful abstraction for78

measuring test coverage for AVs at the semantic level [19]. That motivated79

our recent work introducing SGSM [18] to leverage the semantic abstraction80

of SGs for safety monitoring. In this work, we extend and further elaborate81

SGSM, producing SGSM++. In this paper, we 1) provide additional detail82

and discussion on related works (Section 2) and SGSM (Section 3), 2) extend83

the framework to SGSM++ to enable tracking multiple violations including84

the number and duration of individual violations (Section 4), 3) provide a85

formal analysis of the expressiveness of the framework (Section 5), and 4)86

expand the experimental study to analyze the new contributions (Section 6).87

Returning to the motivating example of a stop sign, Fig. 1 shows the safety88

specification described in linear temporal logic over finite traces (LTLf) [20]89

(further discussed in Section 2.5), the atomic propositions (APs) expressed90

in our DSL, and the deterministic finite automaton (DFA) automatically91

synthesized from the LTLf formula. Fig. 2 shows a snippet of a time sequence92

in which an AV passes an intersection controlled by a stop line without93

stopping. The top row shows the AV’s camera input, while the second row94

shows the subgraph of the SG relevant to the property extracted from each95

input image. As the AV approaches the intersection, the stop line appears in96

the graph with the relationship that it “controlsTrafficOf” the lane that the97

ego vehicle (ego from now on) is in; yet, ego’s velocity remains consistent.98

The APs and states shown at the bottom correspond to the transitions and99

state of the DFA at that time; note that as the input sequence progresses,100

and the stop line is included in the SG but ignored by the AV, the DFA101

moves toward and finally enters the failure state, S4, indicating a violation.102

We introduce the first domain-cognizant, general, and extend-103

4

able approach for the specification of AV safety driving properties104

that can be encoded for automatic monitoring during runtime. The105

approach is domain-cognizant in that it bridges the gap from raw sensor data106

to primitive propositions that capture domain concepts. It is general in that107

it is independent of the AV implementation, only requiring access to exter-108

nal inputs and outputs, e.g. sensor data and AV control commands, from109

which SGs can be derived. It is extendable in that the DSL building blocks110

can be combined to encode properties beyond the ones we study. We imple-111

mented the approach in CARLA [21] to explore its capabilities in simulation112

for 3 AVs from the CARLA leaderboard competition. We find that these AV113

systems, though highly performant under the existing competition metrics,114

consistently violate driving rules—in 50% of executions the AV crossed into115

opposing traffic (ψ1) and in 73% of executions the AV ignored a stop sign116

(ψ9). Further investigation using SGSM++ identified a combined 12.5s spent117

in the opposing lane and 31 ignored stop signs in total.118

2. Background and Related Work119

We briefly survey related work in this area, including prior work on AV120

safety monitors and ontologies for the AV domain, and work that is founda-121

tional to our approach, including SGGs to extract scene semantics, formula-122

tions of propositions over graphs, and temporal logic to specify sequences of123

proposition values.124

2.1. AV Safety Monitors125

Prior work has examined monitoring end-to-end systems. Desai et al.126

propose using observable trajectories to monitor path following and safety127

buffers using signal temporal logic (STL) [22]. Similarly, Zapridou et al. also128

use STL to describe properties and check them using the CARLA simula-129

tor [23]. Stamenkovich et al. use system-independent runtime monitors that130

observe only the external inputs and outputs to check properties specified131

in LTL [13]. Castelino et al. propose using vehicle communication systems132

(V2X) to improve the robustness of runtime monitoring by the diversity of133

available data [24]. Morse et al. characterize spatial relationships between134

sensed objects and robot behaviors, by using graph representations and First135

Order Logic (FOL), that can be used for runtime monitoring [25]. Similarly,136

Matos Pedro et al. developed a runtime verification technique agnostic to the137

target system for checking spatio-temporal properties using LTL and Modal138

5

Metric Spaces [26]. Yalcinkaya et al. propose a runtime assurance framework139

for programming AVs that emits a runtime monitor for the programmed be-140

haviors [27]. Work in shielded reinforcement learning aims to learn [28] or141

enforce [29] safety properties for agents specified in temporal logic and has142

shown to increase robustness of learned behaviors.143

However, each of the previous techniques assume there is a mapping144

from the sensed inputs to the semantics of the atomic propositions (APs)145

in their properties. Extracting the APs requires either limiting the proposi-146

tions checked to those already consumed by the system or additional effort to147

extract the relevant semantics, both of which limit its generalizability. In our148

work we leverage Scene Graph Generators (SGGs), discussed in Section 2.3,149

to generate the sensor input abstraction which we then process using our150

domain-specific language to extract AP values, broadening the applicabil-151

ity of our techniques to any system. Further, SGG is a burgeoning field of152

study within machine learning and computer vision that is constantly ad-153

vancing, with recent progress on SGGs showing improvements on research154

benchmarks [30, 31]. This work provides the framework to benefit from these155

improvements as we expect that the near future will bring faster, more ac-156

curate, more broadly applied methods for SG generation which will further157

broaden the applicability of our safety monitoring approach.158

Prior work has also focused on building specialized monitors for AV soft-159

ware subcomponents rather than full end-to-end systems, such as trajec-160

tory prediction [32], collision avoidance [33, 34], lane changing and over-161

taking [34, 35], or interfaces between AV components such as the CAN162

bus [14, 36] or through ROS topics [37]. Additionally, most of these efforts163

include propositions over simple types, e.g., “disengaged cruise control”, or164

“traveled for 2 seconds”.165

The introduction of machine-learned components to process multi dimen-166

sional sensors complicates the design of monitors due to the black-box nature167

of such components and their ability to perform what were previously sepa-168

rate subtasks as end-to-end computations. Kochanthara et al. provide a ro-169

bust characterization of component-level safety properties for the Apollo AV,170

but do not explore methods for evaluating these properties at runtime [38].171

Torfah et al. use counter-example guided learning to learn a runtime monitor172

that can predict from an observed state if the AV is going to leave its safe173

operation domain [39]. While this can learn to monitor for violations from ex-174

amples, it cannot be used to encode a specific desired property a priori. Yang175

et al. use a reachability analysis tool for runtime safety verification of a neu-176

6

ral network navigation control system using LiDAR to avoid collisions [40];177

however, this is not generalizable to higher-order properties due to its narrow178

focus on control dynamics. Grieser et al. provide a mechanism for monitoring179

a limited set of safety properties based on LiDAR point clouds [41]. However,180

it is not generalizable to other sensors or properties because it is built around181

a DNN particularly tailored for this application that only takes in LiDAR182

points and outputs a torque value to control the motor and a steering angle183

command; different sensors or properties would require further bespoke con-184

figurations. Anderson et al. try to overcome this issue by introducing Spatial185

Regular Expressions for pattern matching over perception streams containing186

spatial and temporal data, leveraging object detection networks [42]; simi-187

larly, Balakrishnan et al. introduce PerceMon to monitor detection systems188

using specifications defined in TQTL [43]. Nonetheless, they can only reason189

about relationships given by bounding box overlap, and misse richer types of190

relationships like proximity between entities or traffic semantics. Similarly,191

Grundt et al. use STL to formally encode specifications, capturing physical192

attributes about the ego vehicle and the ego vehicle’s relationships to other193

vehicles, e.g. the angle of the ego vehicle or its distance to another vehicle.194

However, the formalism cannot capture semantic relationships nor relation-195

ships between other entities, fundamentally limiting the specifications that196

can be encoded [44].197

2.2. Ontologies for the AV Domain198

Another line of related research has explored different ontologies in the199

AV domain [45] for scenario-based testing [46, 47] and for situation as-200

sessment and decision making [48, 49, 50]. The main limitation of these201

approaches, however, is that the ontologies are completely tied to the SUT,202

thus only encoding the information needed by the system and making them203

nongeneralizable. Our previous work on SGs for AV testing [19] demon-204

strated the utility of SGs as a basis for measuring coverage of nontemporal205

properties, but does not provide a mechanism to express and automatically206

check the rich properties studied here. Closer to our abstraction, Majzik et207

al. envisioned using a graph-based ontology of the environment with STL to208

monitor system performance [51], but defines no properties for self-driving209

cars. Our work extends and formalizes this notion with: a spatial-relation210

graph that can be computed from external, system-independent inputs, a211

graph-semantics logic DSL and LTLf that can specify safety-critical proper-212

ties; and we demonstrate that this approach can automatically find property213

7

violations at runtime for AV driving systems.214

2.3. Scene Graph Generation (SGG)215

SGG is an emerging area of research focused on extracting relationships216

between objects from sensor data, e.g., from an image input inferring a pedes-217

trian is on a crosswalk. SGs are directed graphs [52], with a vertex set V that218

represents the set of entities captured by a sensor, e.g., camera or LiDAR,219

and a set of directed edges (u, v) ∈ E describing their relationships. More220

formally, an SG,221

G = (V,E : V 7→ V,Ego ∈ V,
kind : V 7→ K, rel : E 7→ R, att : V ∪ E 7→M)

has a distinguished Ego vertex and functions to access the entity kind of222

a vertex, the relation encoded by an edge, and attribute values of vertices223

and edges. A map M is used to associate attribute values with each type of224

attribute.225

SGGs are highly configurable, enabling the SGs to be tailored to different226

domains. SGGs can be configured to work with different parameterizations227

based on the kinds of entities (K); e.g., whether cars and trucks should be228

treated as separate classes, consolidated into a “vehicle” class, or ignored229

completely. The types of relationships (R) captured and their semantics can230

be configured based on the goals of the SGG; e.g., whether to include distance231

information such as entities being “near” and “far” from each other or higher-232

order information such as this lane “opposes” the other lane based on traffic233

rules. The SGG parameterization extends to the attribute information (M),234

e.g., whether to capture the color of the traffic light, the speed of the other ve-235

hicle, or the height of the pedestrian. In recent years, many SGG techniques236

have been developed [53] leveraging object detection systems (e.g. [54, 55])237

to detect different entities, and then extract relationships between them. In238

the realm of AVs, more tailored SGGs have been proposed [56, 57, 58], that239

leverage domain-specific semantics like road types, vehicle types, and static240

or dynamic entities. Our framework uses an SGG to extract graph-based241

abstractions of sensor data from the world, and our study builds on an SGG242

that operates in the CARLA AV simulator [21].243

2.4. Graph Properties244

There is a rich literature on methods for specifying properties of graphs.245

Given the relational nature of graphs, properties could be specified as queries246

8

in relational algebra [59] or in more specialized graph query languages built on247

relational algebra primitives [60, 61]. Using such methods one can formulate248

a wide range of property specifications. For example, one can express that249

“a graph contains a stop signal that controls the lane ego is in” by combining250

primitives relational join and set intersection as follows:251

join(Ego, isIn) ∩ join(stopsignal, controls) ̸= ∅
where stopsignal = {v : v ∈ V ∧ kind(v) = stop signal}.252

In this work, we focus on core primitives that can be used to specify prop-253

erties like the one described above. In addition to standard set operations,254

those primitives include join (relSet) and a primitive that allows selecting a255

subset of vertices based on properties of their attributes (filterByAttr), fur-256

ther discussed in Section 3.1.1. More complicated properties can be expressed257

over paths by composition and iteration using these primitives. Executable258

specifications built in this way are appropriate for runtime monitoring, in259

contrast to more declarative approaches [61].260

2.5. Linear Temporal Logic261

Linear Temporal Logic (LTL) is a formal language that has been widely262

used for modeling and analyzing systems with temporal aspects, including263

embedded and cyber-physical systems [62, 63, 64]. An LTL formula ψ, is sat-264

isfied by an infinite sequence of truth valuations of APs [65]. There are logic265

operators: And (∧), Or (∨), Not (¬), etc., and temporal operators: Next266

(X), Until (U), Always (G), Eventually (F). By leveraging these operators,267

LTL allows for the precise specification of the system’s behavior over time.268

For runtime monitoring, we use LTL over discrete, finite traces (LTLf) [20].269

An LTLf formula can be automatically converted to a DFA that validates270

whether a finite trace satisfies the property [66, 67] as shown in Fig. 1. Each271

DFA has a defined start state based on the LTLf formula which will be used272

at the initial state when evaluating the formula. A given DFA may also have273

a trap state, a state whose only transitions are to itself such that regardless274

of the future AP values the DFA will remain in the trap state. LTLf does275

not provide a language for specifying the APs themselves; rather, the APs276

must be evaluated before being consumed by the LTLf formula.277

3. SGSM Framework278

Fig. 3 provides an overview of the monitoring framework which has two279

phases to enable the specification and runtime monitoring of driving proper-280

9

Environment

Sensors

Sensor
Data

State
Estimation

SUT

Decision
Output

State

SGG SG SG Annotator SG*

Eg
o

Ve
hi

cl
e

Offline

Online

Informal
Specification

Domain Expert Developer

Define

Violation
Durations

Violation
Counts

Evaluate SG
Propositions

Proposition
values

Monitor
Safety Property DFARepresentation Creation Property Evaluation

SGL++

Monitor
Synthesis

Encoded
Specification

Safety
Property

Recovery
Criteria

Reset
Mapping

Recovery Criteria DFA

Figure 3: SGSM++ framework overview. SGSM++ offline phase at the top produces an
encoded specification which is then synthesized into a monitor used in the online phase
at the bottom to identify violations. Items in orange italics are part of the extension to

SGSM++ (discussed in Section 4) from SGSM [18] (discussed in Section 3).

ties for AVs. First, in the offline phase shown at the top, a developer works281

to encode properties to be checked by the system. The encoded specification282

is then synthesized to produce a monitor which will evaluate each property283

during the online phase to monitor for property violations. In the online284

phase, the monitor leverages the sensor input and decision output of ego to285

create an enriched scene graph, SG*, which is then used to evaluate the APs286

over SG* to determine if a violation has occurred. Fig. 3 encompasses both287

SGSM, developed in our initial work [18], and further extensions explored in288

this work to create SGSM++. In Fig. 3, the novel components for SGSM++289

are shown in orange italics for clarity. The following sections provide further290

discussion on the SGSM framework; Section 4 then builds from this as the291

basis for the SGSM++ framework.292

3.1. Offline293

SGSM assists developers in formally specifying driving properties pre-294

pared by domain experts, such as those found in a driving manual, in a295

computable format that is checkable at runtime. The assistance comes in296

the form of a DSL, called Scene Graph Language (SGL), that allows the297

developer to define LTLf formulas and evaluate propositions on the SG and298

ego’s state. The developer begins by encoding the specification as a safety299

10

property in SGL, and defines the sampling rate at which the property needs300

to be checked. The safety property can then be synthesized into a system301

monitor that can be deployed during the online phase to check for property302

violations.303

We now introduce SGL, which combines LTLf and a set of SG querying304

functions, to facilitate the specification of driving properties.305

3.1.1. Specification Definition306

SGL allows the developer to reason about ego’s environment and state307

through propositions over sets of nodes in the SG. In addition to traditional308

set operations including union, intersection, and difference, SGL leverages309

two functions to perform graph queries: relSet and filterByAttr. Together,310

these functions will be used to derive sets of nodes with specific semantics,311

e.g., the set of red traffic lights. These sets will then allow for evaluating the312

atomic propositions by evaluating the elements of the set, e.g., whether or313

not there is a red traffic light is found by checking if the set of red traffic314

lights is non-empty.315

The relSet function computes the join of a set of vertices and a relation.316

relSet : (V1 ⊆ V, r ∈ R) 7→ V2 ⊆ V

V2 = {v2 : v1 ∈ V1 ∧ (v1, v2) ∈ E ∧ rel(v1, v2) = r}

For example, the set of lanes controlled by a stop sign is317

relSet(stopSigns , controlsTrafficOf). SGL also supports relSetR – the join318

of the transpose of the given relation. The transpose allows, e.g., finding the319

set of stop signs that control a lane.320

The filterByAttr function selects a subset of vertices, V1, whose at-321

tribute, m, satisfies a given predicate, f .322

filterByAttr : (V1 ⊆ V,m ∈M, f : T 7→ bool) 7→ V2 ⊆ V

V2 = {v : v ∈ V1 ∧ type(att(v)[m]) = T ∧ f(att(v)[m])}

For example, filterByAttr(trafficLights , lightState, λx : x = Red) yields the323

corresponding set of red traffic lights. See Table 2 in Section 6 for SGL324

encodings of the atomic propositions evaluated for the properties studied.325

As defined here, SGL utilizes only a core set of primitive operators, relSet326

and filterByAttr as these, along with the set, logic, and temporal operators327

are sufficient for this application. This allows us to explore the benefit of the328

11

approach with minimal language engineering and future work could build329

higher-level languages that compile to these core primitives. The study ex-330

amines in Section 6.2 the utility of this level of expression for its purpose as331

a runtime monitor.332

SGL includes standard operators for numeric comparison, boolean logic,333

and set manipulation which are used to convert from vertex sets to APs.334

For example, whether ego has a throttle attribute below a given threshold,335

ϵ, is specified by |filterByAttr(Ego, throttle, λx : x < ϵ)| = 1. The APs are336

the building blocks for specifying different aspects of the AV’s environment337

and behavior and can be combined with temporal operators through LTLf338

to express temporal relationships in the AV’s behavior, enabling a precise339

characterization of its actions and responses in dynamic environments.340

SGL also builds on Linear Temporal Logic on Finite Traces (LTLf) [20]341

which provides a set of logical and temporal operators (described in Sec-342

tion 2.5) for describing whether a finite trace of atomic proposition values343

satisfies the given LTLf formula. For example, Fig. 1 shows the LTLf for-344

mula for ψ9 which encodes that the AV must stop at stop signs. Informally,345

this formula states that always, once the AV detects a stop sign, it must346

detect the stop sign until it has stopped; i.e., if it stops detecting the stop347

sign without having stopped, then it has run the stop sign. Section 4.1.2348

provides additional, precise discussion of ψ9’s LTLf encoding.349

In addition to the standard temporal operators, SGL also defines a dis-350

crete metric operator, $[N][AP], to ease the LTLf specification over repeated351

APs by unrolling the AP N times using the X operator. Under a set sam-352

pling rate, this can be used to specify, e.g., that an AP has a certain value353

for a certain duration. This is studied in Section 6 for properties that check354

that the ego vehicle completes an action within a certain time window. We355

also adopt the use of the last keyword from prior work as a shorthand for356

¬X True which encodes intuitively that the current input must be the last357

input—all future inputs lead to the formula not accepting [20].358

3.1.2. Monitor Synthesis359

The foundation of all SGL specifications is the safety property encoding360

to enable the synthesis of the monitor. The property must be encoded as a361

safety constraint, i.e. a property that must be continuously satisfied during362

execution. The formula will be evaluated repeatedly at runtime by the mon-363

itor and thus it must be specified in such a manner so that all satisfactory364

sub-traces are also accepting. In the corresponding DFA for the LTLf for-365

12

mula this means there must be a unique non-accepting state and that state366

must also be a trap state. This is exemplified by the property ψ9 shown in367

Fig. 1; examining the DFA, we see that there are three accepting states that368

correspond to the progression of the LTLf formula, and a unique failure state369

that is also the trap state.370

The correctness of the synthesized monitor is predicated on maintaining371

a consistent state between the monitor and the system. While this warrants372

careful consideration in the construction of the whole encoding, particular373

care is required setting the start state during initialization to reflect the374

state of the system. This could be enforced through outside guarantees of375

the system being in a known state at the start of monitoring, or by the376

encoding assuming no particular initial state and using the APs during the377

first several time steps to identify a known state being reached.378

3.2. Online379

As ego senses the environment, it provides data to the system under380

test (SUT) to produce a decision output for the vehicle. SGSM provides a381

runtime monitor (green box) to check for property violations by processing382

sensor data and appending the ego’s decision output to create SG*. It then383

evaluates the SGL function over SG* to assign the values of the APs. These384

AP values are then used to update the LTLf DFA state machine. Finally,385

the monitor outputs if the property holds or is violated based on the DFA386

state. The monitor has two main modules described next.387

3.2.1. Representation creation388

This module consumes sensor data to estimate the state of ego and to389

produce an SG through the SGG component. The resulting SG is enriched390

by the SG annotator component with information about the SUT’s output,391

and the state of ego to produce SG*. For example, Fig. 2 shows the relevant392

subgraphs generated for evaluating ψ9 to monitor for stop sign violations. As393

shown in the middle two time steps, the SG contains ego in lane 2 as well as a394

stop line that controls lane 2. This information can be readily computed from395

ego’s external sensor input to perceive which lane it is in and the presence396

of a stop signal, perhaps in combination with available high-definition maps.397

Additionally, the ego node contains an attribute for its velocity which could398

be measured from its speedometer, etc. to check if ego is stopped. Though399

not used in this example, SG is also annotated with ego’s decision output to400

produce SG*. We can imagine a related property to ψ9 that instead stated401

13

that immediately after detecting a stop signal, ego must begin to decelerate—402

this could be monitored by checking that ego immediately output a sufficient403

brake command.404

In this presentation, SGSM aims to monitor for property violations that405

occur in the world. As such, the creation of SG* is designed to be black-406

box with respect to the SUT to maximize the generality of the approach,407

only using externally observable sensor data, i.e. SUT inputs, and decisions,408

i.e. SUT outputs. However, SGSM could also be employed in a white-box409

fashion to monitor the internal components of the SUT. For example, the410

SG annotator could additionally enrich SG* to include information from the411

motion planning or control components of the SUT to allow for specifying412

safety properties over, e.g., the planned future trajectory of the AV. We leave413

the exploration of such properties for future work.414

3.2.2. Property evaluation415

This module takes in SG* and an SGL function containing the LTLf416

property. It first evaluates each AP by querying SG*, and then uses the AP417

values to update the DFA state. Depending on the DFA state, the monitor418

returns whether the property holds or is violated.419

Table 3 gives a complete list of APs computed to evaluate the properties420

studied. These APs yield an understanding of the spatial and temporal421

distribution of entities related to ego. For example, ψ9 checks if ego responds422

to stop signs by evaluating the hasStop and isStopped APs. hasStop is true423

iff the set of lanes controlled by stop signs and lines (stopSignLanes) intersect424

with the set of lanes ego is in (egoLanes) is non-empty, which would indicate425

that ego is being directed to stop. isStopped is true iff the set of ego with426

speed < ϵ (egoStopped) is non-empty, indicating that ego is stopped.427

4. Extending SGSM428

We will first introduce the challenges to SGSM and then introduce two429

extensions to address them.430

4.1. Motivation431

We now explore the limitations of SGSM as presented across two dimen-432

sions. First, the properties as encoded in SGL differ from those encountered433

in, e.g., the driving code in one crucial dimension: the ability to handle mul-434

tiple violations, i.e. to count the number and duration of different violations.435

14

Safety
Property
Instance i

Recovery
Criteria
Instance i

Safety
Property

Instance i+ 1

Trace
vi ri

Reset Mapping

Applied to initialize i+ 1

vi+1

Figure 4: Timeline diagram, time advancing left to right, illustrating the use of SGSM++
to identify the start of a violation at time vi, its recovery at time ri, and the initialization
of a the safety property to monitor future violation vi+1.

Second, we consider the impact of extensions in this direction on how the436

properties’ initializations are encoded.437

At a high level, Fig. 4 illustrates the timeline of a trace of an AV system438

being monitored for violations of a safety property specified in LTLf . At time439

vi, the ith property violation is identified. In order to count future violations,440

a recovery criteria specified in LTLf begins monitoring to determine when441

the violation has concluded, which eventually occurs at time ri. Once the442

recovery formula has been satisfied, the approach must reset the safety prop-443

erty to enable monitoring. However, the conditions that are present at the444

time of reset may be different from the initial conditions that were assumed445

by the system and property when monitoring began. To address this, a reset446

mapping specified in LTLf is provided that captures the relevant subset of447

the trace history and uses it to initialize the safety property monitor. This448

paradigm allows for identifying multiple violations of a property over a single449

trace and by examining the timing of the violations and subsequent recover-450

ies, the number of total violations and the duration of each violation can be451

calculated. The following sections briefly motivate and describe this process452

in more depth.453

4.1.1. Counting and Duration454

Consider ψ9 shown in Fig. 1, the original specification from the driving455

code, § 46.2-821 says “[a] vehicle approaching an intersection on a highway456

controlled by a stop sign, shall, immediately before entering such intersection,457

stop [...] before entering” [17]. Though not specified, this specification implic-458

itly applies over each intersection that the vehicle approaches. However, it is459

encoded in SGL as G((¬hasStop∧X (hasStop))→ (X (hasStop U (isStopped∨460

15

G(hasStop))))), which says that globally (G), the vehicle must never run a461

stop sign. This difference between “for each intersection” and “globally for462

all intersections” leads to different behaviors after the first violation. Un-463

der the encoding, once any stop sign has been passed without stopping, the464

vehicle is in violation, and it cannot recover from this violation, in effect465

resulting in no additional monitoring for future stop signs. We can imagine466

a meta-property stating that the vehicle can run no more than N stop signs;467

for fixed N , this can be encoded by chaining the inner terms of ψ9, but this468

cannot monitor for an unbounded number of violations.469

Further, some violations lend themselves to a notion of “duration of viola-470

tion”. Consider § 46.2-804 (ψ1) which states “Wherever a highway is marked471

with double traffic lines consisting of two immediately adjacent solid yellow472

lines, no vehicle shall be driven to the left of such lines” [17]. This is en-473

coded as G(¬isOppLane) to denote that globally the vehicle should not be474

in the opposing lane. Even with the ability to count the number of times475

that the vehicle is in the opposing lane, we may additionally want to track a476

qualitatively different metric capturing the duration that the vehicle was in477

violation, e.g. the amount of time spent in the opposing lane. Under SGL,478

for specific durations of interest, different parameterizations of the property479

could be encoded to track, e.g., spending less than 1 second or 10 seconds in480

the opposing lane, but with finitely many properties there is a strict bound481

on the number of distinct durations that can be tracked.482

This work extends the expressiveness of SGL to handle both counting483

and duration tracking in Section 4.2.484

4.1.2. Handling Re-initialization485

As noted in Section 3.1.2, the correctness of the monitor is predicated486

on maintaining a consistent state between the monitor and the state of the487

system. This is particularly critical when the monitor is initialized; either488

external guarantees must be in place to ensure that the system and moni-489

tor are in a consistent initial state, or the safety property encoding must be490

specified so as to not assume a particular prior state, i.e. it must initialize491

into a “warm up” period where it observes the trace until it can reach a492

known state. For example, if the AV always begins in a set location such493

as a parking garage with known characteristics, the safety property could494

use this assumption in its initialization; by contrast, if there exists a possi-495

bility that the monitor is not enabled until the AV is mid-deployment, no496

such assumptions can be made. Controlling for this initialization can im-497

16

pact the semantics of the encoded safety property. Consider ψ9, the original498

specification from the driving code, §46.2-821 says “[a] vehicle approaching499

an intersection on a highway controlled by a stop sign, shall, immediately500

before entering such intersection, stop [...] before entering” [17]. However,501

the natural language description shown in Table 1 says “once the ego vehicle502

detects a new stop signal controlling its lane, it must stop before passing503

the stop signal”. The word “new” is added because the specification cannot504

make any assumptions at initialization. It is possible that at the time the505

safety monitor is enabled there is a stop sign already present. In such a case,506

the AV may have stopped prior to the safety monitor being enabled; given507

this uncertainty, the developers must decide which way to err in implementa-508

tion: either require the AV to stop, potentially in excess of what is required,509

or do not require the AV to stop at the first stop sign, potentially missing510

a violation. The implementation of ψ9 chooses the latter, only requiring the511

AV to stop at new stop signs. As such, the start state is incorrect to serve512

as the initial state for reinitialization to monitor for future violations; once513

a violation has occurred, we know from the history of the scenario that ego514

should stop for the next stop sign as it definitely has not stopped for it in the515

past. This highlights how the initial state at monitor startup and the initial516

state of the monitor when being reset to observe for additional violations517

may need to be different. We refer to the initial state for future monitors as518

the reset state.519

From this understanding of ψ9, we can then ascribe semantics to each of520

the four DFA states shown in Fig. 1. We will use this running example to521

better understand the solution described in Section 4.3.522

S1: (accepting) The AV is controlled by a stop sign but either has already523

fulfilled its obligation to stop or does not need to stop because the stop524

sign was already present at initialization.525

S2: (accepting) The AV is not controlled by a stop sign.526

S3: (accepting) The AV is controlled by a stop sign and has not yet fulfilled527

its obligation to stop.528

S4: (failure; trap) The AV was controlled by a stop sign and did not stop529

before it stopped being controlled by a stop sign.530

4.2. Recovery Criteria Encoding531

As discussed, the safety property encoding of a SGL specification must532

have a unique failure/trap state. In order to count the duration and number533

17

Algorithm 1 SGSM++ violation and duration counting

1: procedure violationCountDuration(propDFA, recoveryDFA)
2: currTime ← 0
3: violationStarts ← {} ▷ Track violation start times
4: violationEnds ← {} ▷ Track violation end times
5: ▷ Violation start/end time yields count, duration, and timing info
6: inViolation ← False
7: while isRunning do
8: currentState ← evalAPs(getCurrSG()) ▷ Update APs from SG
9: propDFA.step(currentState) ▷ Step the property DFA
10: ▷ Violation means trap state, is safe to keep stepping
11: if ¬propDFA.isAccepting() then ▷ In violation
12: if ¬inViolation then
13: violationStarts.push(currTime) ▷ Mark violation start
14: inViolation ← True
15: recoveryDFA.step(currentState) ▷ Step the reset DFA
16: if recoveryDFA.isAccepting() then ▷ Violation ended
17: inViolation ← False
18: violationEnds.push(currTime) ▷ Mark violation end
19: propDFA.reset() ▷ See Section 4.3
20: recoveryDFA.reset()
21: currTime ← currTime + 1
22: ▷ If ending in violation, there will be an unmatched start time
23: return violationStarts, violationEnds

R2 R1
¬ isOppLane

isOppLaneTrue

S1 S2
isOppLane

True¬ isOppLaneLTLf Safety Property

Formula for 𝜓1:

𝒢(¬ isOppLane)

LTLf Recovery Criteria

Formula for 𝜓1:

𝑖𝑠𝑂𝑝𝑝𝐿𝑎𝑛𝑒 𝒰 ¬ isOppLane

Violation
begins

Violation
ends

Figure 5: LTLf for ψ1 and its recovery criteria

18

of violations, there must be a way to exit the trap state. For this, SGSM++534

uses a recovery criteria that specifies when the safety property DFA should535

exit the trap state.536

Algorithm 1 provides a pseudocode outline of this procedure; we refer to537

the line numbers in this algorithm in the following explanation. The recovery538

criteria expresses, through LTLf , that acceptance only occurs when the AV539

has stopped violating the safety property. Once the safety property DFA540

has entered the non-accepting state which is also the trap state (line 11),541

SGSM++ marks the start of a new violation (line 13) and begins evaluating542

the recovery criteria LTLf formula (line 15). Once the recovery criteria DFA543

accepts (line 16), the end of the violation is marked (line 18) and the safety544

property DFA is reset (line 19); more information about how that reset is545

performed is explained in the next section. In this paradigm, converse to the546

safety property encoding, the corresponding DFA for the recovery criteria547

must have a unique accepting state that is also the trap state. The reset548

DFA is also reset once it accepts (line 20). As shown in Algorithm 1, the549

implementation tracks the start and end of every violation which can be550

used to determine the count and duration. This process is visualized in the551

timeline shown in Fig. 4 where the safety property DFA is evaluating until552

the violation is identified at time vi, when the recovery criteria DFA begins553

evaluating until the end of the violation is identified at time ri. The duration554

of the violation is thus ri − vi.555

For example, ψ1 specifies that the vehicle cannot be in the opposing lane556

and the safety property is encoded as G(¬isOppLane). The recovery criteria557

for ψ1 is that the vehicle no longer be in the opposing lane, which is encoded558

as isOppLane U ¬isOppLane; that is, evaluation continues as long as the AS559

continues to be in the opposing lane and only accepts when this is no longer560

the case. This paradigm generalizes; all specifications of the form G(¬a) have561

a natural recovery criteria of a U ¬a. Fig. 5 illustrates this case through the562

safety property DFA (top) and the recovery criteria DFA (bottom). During563

monitoring, the safety property DFA begins in state S1 and stays as long564

as isOppLane remains True. Once isOppLane is False, the safety property565

DFA transitions to S2. As this is the non-accepting trap state, execution566

immediately passes to the recovery criteria DFA and the start of a violation567

is recorded. The recovery criteria DFA starts in state R1 and will remain in568

this non-accepting state until isOppLane is False, at which point the recovery569

criteria DFA will transition to R2 and execution immediately passes to the570

safety property DFA and the end of the violation is recorded.571

19

The default recovery criteria is False, meaning that the specification is572

irrecoverable. In this way, we can model the properties explored in prior573

work on SGSM as having a recovery criteria of False which is strictly weaker574

in terms of expressiveness [18]. Under previous work it was not possible to575

count the number and duration of violations, only whether or not a violation576

occurred at least once during the trace.577

By contrast to irrecoverable specifications, some specifications are in-578

stantly recoverable, i.e. there is no sensible concept of “duration of viola-579

tion”. Consider ψ9 which captures the specification that the AV should not580

run a stop sign. There is no sensible concept for the duration of running581

the stop sign—once the AV has passed the stop sign it cannot recover for582

that stop sign; however, it is still useful to track future violations, i.e. fu-583

ture stop signs. In these cases, the recovery criteria is trivial—a criteria of584

True means that the recovery is instantaneous and vi equals ri. As shown585

in Algorithm 1, this will result in the violation start and end being marked586

during the same iteration through the while loop since the recovery DFA is587

immediately accepting.588

4.3. Reset Mapping Encoding589

As noted in Section 4.1.2, the behavior of the safety property must make590

decisions about how to handle the initialization of the monitor to ensure591

the system and monitor are in a consistent state. This poses a challenge592

when resetting the property; a naive implementation could restart the safety593

property DFA at its start state as it would be during monitor start up.594

However, at the time of reset there is a known history that led to the violation595

or its recovery, and so restarting at the initial state of the safety property596

may not be correct. In the example of ψ9, the developer may choose to be597

lenient in the encoding of the property to not enforce the desired behavior598

until a known state is reached, namely that there are no stop signs so that599

is guaranteed that the AV must stop for any new stop signs.600

From the discussion on ψ9 in Section 4.1.2, state S2 is the only accepting601

state that corresponds to the AV not being controlled by a stop sign. This602

is precisely the known state of the system when the violation occurs—a vio-603

lation means that the AV is no longer controlled by a stop sign. Thus, the604

correct behavior is to reset to state S2 rather than S1 as we can reason about605

the semantics of the violation behavior to understand how the prior history606

informs future potential violations, ensuring that the system and monitor607

are in a consistent state. It is important to note that not all aspects of the608

20

history are useful. In this case, the history of the hasStop variable is critical609

to understanding the known state of the environment for future potential610

violations; however, the isStopped variable’s history is not useful as we need611

to ignore the history of the violation in order to reset to track for future612

violations. From this understanding that violating ψ9 guarantees a known613

history of the AV not being controlled by a stop sign, SGSM++ provides614

the user with a mechanism to specify what portion of the history should be615

applied to the future monitoring.616

Algorithm 2 SGSM++ reset mapping encoding

1: procedure findResetState(propDFA, resetDFA)
2: productDFA← cartesianProduct(propDFA, resetDFA)
3: ▷ Remove the unsatisfiable transitions
4: for transition ∈ productDFA.transitions() do ▷ Over propDFA ∧ resetDFA
5: predicate ← transition.predicate()
6: if unsat(predicate) then
7: productDFA.removeTransition(transition)
8: ▷ Iteratively prune unreachable states
9: repeat
10: prevProductStates ← |productDFA.states()|
11: for productState ∈ productDFA.states() do
12: if isUnreachable(productState) then
13: productDFA.remove(productState)
14: until prevProductStates == |productDFA.states()|
15: ▷ Find accepting states
16: acceptingStates ← {}
17: for (propState, resetState) ∈ productDFA.states() do
18: if resetState.isAccepting() then
19: acceptingStates.add(propState)
20: if |acceptingStates| == 0 then
21: RaiseError : reset mapping over-constrains history
22: else if |acceptingStates| > 1 then
23: RaiseError : reset mapping under-constrains history
24: else
25: return acceptingStates.pop()

The user specifies the relevant history by providing a reset mapping as an617

LTLf formula that accepts on exactly the possible histories that inform the618

known state of the system at the end of the violation. The reset mapping is619

used to identify which state in the safety property DFA should be used as620

the reset state as shown in Algorithm 2. In Fig. 4, this is shown above the621

trace; it is assumed that the reset mapping is accepting at the time that the622

21

recovery criteria is accepting and that the history that led to this acceptance623

provides the information needed to reset the monitor into a state that is624

consistent with the system. Note that the default reset mapping ¬F last,625

which only accepts on the empty trace, always results in the reset state being626

the same as the original start state. This fits our intuitive understanding, as627

this says that there is no particular history that is relevant to the reset.628

First, the cartesian product of the safety property DFA and the reset629

mapping DFA is computed (line 2). Then, edges which are logically unsatis-630

fiable are removed (lines 4-7). Finally, all unreachable states are iteratively631

pruned from the resulting DFA (lines 9-14). To find the reset state of the632

safety property DFA, create an empty set (line 16); then for each state in the633

product graph that corresponds to an accepting state in the reset mapping634

graph, add the corresponding safety property state to the set (lines 17-19).635

If the provided reset mapping is valid, this will result in a set of exactly636

one state (lines 24-25); if the set is empty (line 20-21) or has more than one637

state (lines 22-23), then the provided reset mapping is not valid for the safety638

property because it either over-constrains or under-constrains the set of pos-639

sible histories such that their application to the safety property state either640

resulted in no possible states or multiple possible states. This algorithm is641

run only once at compile time during monitor synthesis and the found reset642

state is stored for use during online monitoring.643

In the case of ψ9, the desired history captures that in the past ego was644

controlled by a stop sign until the latest time step when ego was no longer645

controlled by a stop sign. This is encoded as hasStop U (¬hasStop ∧ last);646

note the use of the last keyword to denote end of input as discussed in647

Section 3.1.1. Running this algorithm on ψ9 using the reset mapping given648

above results in state S2 being identified as the reset state as expected.649

5. Limitations of Expressiveness650

Although the extension from SGSM to SGSM++ has increased the ex-651

pressiveness of the approach and enabled the monitoring of additional prop-652

erties and multiple violations, the set of all possible properties is large. We653

now reflect on the limitations of SGSM++ with respect to its expressiveness654

and accuracy.655

22

5.1. Temporal Properties over Symbolic Entities656

As described in Section 3.2, at each time step the online portion of the657

framework occurs in two phases: first the AP values are extracted from the658

current SG, and then these AP values are used to drive the DFA update.659

This strict boundary between the evaluation of the AP and any temporal660

information limits the expressiveness of SGSM++ due to not being able to661

propagate relevant information through time. Consider § 46.2-820 which662

states “[...] when two vehicles approach or enter an uncontrolled intersection663

at approximately the same time, the driver of the vehicle on the left shall664

yield the right-of-way to the vehicle on the right” [17]. In order to encode665

this specification, we must have information about when ego approaches an666

intersection and when another vehicle approaches an intersection in order to667

know if those two actions happen at the same time. A single instance of this668

interaction could be imagined in LTLf as:669

(¬egoAtIntersection ∧ ¬otherVehicleAtIntersection)∧
X (egoAtIntersection ∧ otherVehicleAtIntersection

∧ egoOnLeftOfOtherVehicle)

→
XX (egoAtIntersection U ¬otherVehicleAtIntersection)

That is, if ego and the other vehicle begin not at the intersection in the670

first time step, then at the second time step they are both at the intersec-671

tion and ego is on the left, then until the other vehicle leaves the intersec-672

tion, ego must continuously wait at the intersection. While the value for673

egoAtIntersection can be directly observed from ego’s state and surround-674

ing, determining otherVehicleAtIntersection under this context requires not675

just determining that some vehicle is at the intersection at each time step,676

but that the same vehicle is at the intersection for each of these evaluations.677

This notion of the same vehicle cannot be expressed in general by SGL using678

the graph querying functions described in Section 3.1.1—either the specifi-679

cation can be encoded to check for some vehicle by using the entity kind680

filter, e.g. otherCars = filterByAttr(G \ {Ego}, kind, λx : x = car) to say681

that some car but not necessarily the same car each frame is at the intersec-682

tion, or it can check for a specific car by using a unique identifier attribute,683

e.g. car01 = filterByAttr(otherCars , uniqID, λx : x = car01) to say that ego684

23

should yield to car011. Checking for just some vehicle without guaranteeing685

that all parts of the equation refer to the same vehicle at all time steps is log-686

ically incorrect. Checking for a specific vehicle using a unique identifier will687

check the correct behavior, but only for the specific vehicle hard-coded into688

the property. As such, the specification cannot be checked in the general case689

for yielding to arbitrary vehicles and can only be checked for a predetermined690

set of identifiers. This comes from the inability to transfer this additional691

context information through time as only the truth values of the APs can be692

transferred through time using the LTLf formula. A more accurate encoding693

of the property can be imagined as follows—note that the vehicle quantifier694

binds across time.695

∀vehicle : {(¬egoAtIntersection ∧ ¬atIntersection(vehicle))∧
X (egoAtIntersection ∧ atIntersection(vehicle)

∧ egoOnLeftOf (vehicle))

→
XX (egoAtIntersection U ¬atIntersection(vehicle))}

In this way, such properties require a symbolic entity so as to not only696

evaluate that the property holds, but over which other vehicles. This may697

be achievable by instantiating separate monitors based on the product space698

of the quantifiers as this has been successful for other runtime monitoring699

tasks [43]. However, further work is required to demonstrate that this re-700

mains efficient to meet runtime constraints as prior work is exponential in701

the number of quantifiers. A key benefit of SGSM++ is that it runs in702

constant time and even with this limitation has demonstrated the ability to703

encode important safety properties. While we characterize this limitation,704

we leave its solution to future work.705

5.2. Monitoring over Discrete Time706

A fundamental limitation of the SGSM++ framework comes from its use707

of discrete evaluations of the properties and underlying APs in time. While708

a sufficiently rich logic could leverage continuous time, in practice SGGs can709

1The ability to produce a consistent unique identifier is itself a hard problem with ongo-
ing research, referred to as “object reidentification” [68, 69, 70] or “object tracking” [71, 72]
in the literature.

24

only be implemented over discrete time. This can be mitigated by increasing710

the rate at which a property is evaluated, but this will always impact the711

semantics of the implemented monitor. For example, consider ψ1 saying ego712

must not be in the opposing lane. Once an SG is observed where ego is in the713

opposing lane, the duration of violation is measured until an SG is observed714

where ego is not in the opposing lane. If ego returned to its own lane and715

then re-entered the opposing lane between the time two successive SGs were716

captured and evaluated, then what to the system was two violations appear717

to the monitor as one longer violation. This manifests not only in violation718

duration, but also in any internal temporal state.719

5.3. Variable Duration Properties720

In the LTLf encoding of properties, any durations required of the prop-721

erty are measured by counting a number of consecutive frames. Counting a722

duration of N frames thus requires N separate states as each state encodes723

its position in the sequence. This limits expressiveness as this number must724

be determined as a part of the property specification and cannot be dynamic725

in response to the system state. Consider § 46.2-849.B. from the Virginia726

Driving Code on turn signals that says “Wherever the lawful speed is more727

than 35 miles per hour, such signals shall be given continuously for a distance728

of at least 100 feet, and in all other cases at least 50 feet, before slowing down,729

stopping, turning, or partly turning” [17]. While SGSM could monitor for730

whether the turn signal is being given continuously until the turn, it cannot731

be used to track the required distance. A stricter version of the specification732

could be encoded that leverages the fact that at 35 miles per hour it takes733

1.95 seconds to travel 100 feet, and less time than that at higher speeds.734

Thus, a property that monitors for 1.95 seconds would guarantee that no735

violations occur, but if ego is travelling at 70 miles per hour will enforce a736

duration that is twice as long as necessary. A richer logic is required to enable737

connecting the temporal aspects of the monitor with the dynamic aspects of738

the system; we leave such exploration to future work.739

5.4. Precision and Recall of Scene Graph Generators740

The foundation of SGSM entails the use of SGs to capture the relevant741

information about the AV and its environment which SGL++ then uses to742

extract the relevant APs to monitor the properties. While SGs are an ex-743

tensible framework with the potential to encode arbitrary entities, relations,744

and attributes, in practice there are limits to the SGs due to the precision745

25

and recall of modern SGGs. To this end, the set of specifications that can746

be accurately checked are limited by the SGGs employed during monitor-747

ing. Modern SGGs rely on state-of-the-art object detection methods such as748

Detectron2 [54], etc. to identify entities. Such rich perception systems are749

still an active field of research, and current methods have limited precision,750

particularly when evaluating over less common classes [73]. A prior limited-751

scale study of SGGs over real data showed that for only 60% of images did752

the SG produced match a human annotation [19]. An inaccuracy in the SG753

could lead to an incorrect AP as evaluated by the monitor which could lead754

to erroneous or missed violations or violation recoveries. Such inaccuracies755

could arise from, e.g., an erroneous inclusion or exclusion of an entity, mis-756

labeling of an attribute, or an incorrectly defined edge We hypothesize that757

adding a notion of uncertainty or confidence to both the properties and the758

SGG to enable, e.g., “the vehicle must stop if it is 50% sure there is a stop759

sign” would aid in this aspect; however, accurately judging confidence and760

integrating uncertainty across sensor and perception modalities remains a761

challenge that we leave for future work.762

The set of specifications that can be checked by existing SGGs is also763

limited by the range of available entities, attributes, and relations of the764

SGG. Consider § 46.2-828.1 of the Virginia Driving Code which states “It765

shall be unlawful for [...] any motor vehicle intentionally to impede or disrupt766

a funeral procession” [17]; unless the SGG has a mechanism for perceiving767

and annotating a funeral procession in the SG, this remains out of reach for768

runtime monitoring. The space of entities, attributes, and relations described769

in the driving code and other sources for AV safety properties should serve770

to inform the development of future SGGs.771

6. Study772

We aim to answer the following research questions:773

RQ#1: What driving properties can SGSM express?774

RQ#2: Can SGSM find safety violations in AV systems?775

RQ#3: Can SGSM++ identify the count and duration of violations?776

26

6.1. Setup777

To evaluate SGSM++’s performance in contrast to SGSM’s ability to act778

as an automatic safety monitor, we need a common execution environment779

on which to run several AV systems to monitor.780

6.1.1. Common Execution Platform781

For running the study, we used the CARLA simulator for urban driv-782

ing [21], which is widely-targeted for AV development due to its realistic783

environments, complex traffic simulation, and ability to model a variety of784

relevant road scenarios. CARLA holds a competition called the Autonomous785

Driving Leaderboard, which provides preconfigured scenarios to challenge the786

community to create systems that can drive autonomously. The challenge787

includes a variety of towns, 10 different scenarios, each one of them defining788

a different traffic situation, and a set of routes. We evaluated the 3 top-789

ranked systems [74] as of June 2022, using the provided evaluation routes for790

Town05, that includes 2-lane roads and 3-lane highways; 4-lane and T inter-791

sections; traffic lights, stop signs, crossing lanes; and pedestrians, cyclists,792

cars, and trucks. Particularly relevant to the properties examined later in793

the study, the evaluation routes pass 27 stop signs and 109 junctions.794

We developed an SGG in the form of a Python module that interfaces795

with the CARLA API to extract the relevant entities, their attributes, and796

compute their relationships with each other and the road structure. The SGG797

uses ground truth information from CARLA to include all entities within798

a 50m by 50m area horizontally centered on ego and vertically offset to799

include 45m ahead of ego to be consistent with prior work [18, 19]. We800

adopt the default entity and relationship scheme from prior work on SGs for801

AVs [56, 19], enriched with additional information to include entities for the802

lanes, roads, and junctions and their relations based on the flow of traffic.803

Our unoptimized SGG and annotator take on average 288 ms to create a804

single SG∗ and our monitor takes 67 ms to evaluate all properties on it using805

an Intel Xeon Silver 4216 CPU @ 2.10GHz, 128 GB of RAM, and one Nvidia806

Titan RTX. While our simulation-based SGG uses ground truth information807

to eliminate the effects of sensor noise in our study, the current trajectory808

of SGG research in conjunction with the availability of HD maps for AV809

systems is promising for implementation of SGSM and SGSM++ on real-810

world systems.811

27

Table 1: Properties implemented in SGL [18] and SGL++

ψ VA
Code

English Summary of Property LTLf Formula over SG propositions
DFA
States

ψ1 § 46.2-
804

Ego vehicle cannot be in the
opposing lane.

G(¬isOppLane) 2

ψ2 § 46.2-
802

Ego vehicle cannot be out of
the road.

G(¬isOffRoad) 2

ψ3 § 46.2-
802

If ego vehicle is in the right-
most lane, then ego vehicle
should not steer to the right.

G(isInRightLane ∧ ¬isJunction
→ isNotSteerRight)

2

ψ4 § 46.2-
816

Ego vehicle should not be be-
hind another entity in the
same lane whithin 4 meters
while travelling at a speed >
S.

G(isNearColl → ¬isFasterThanS) 2

ψ5 § 46.2-
816

If ego vehicle is between 4 and
7 meters of the closest vehi-
cle in the same lane and then
comes within 4 meters of a ve-
hicle in the same lane, throt-
tle must not be positive.

G((isSuperNear ∧ ¬isNearColl)∧
X (isNearColl)→ X (isNoThrottle))

3

ψ6 § 46.2-
888

If the ego vehicle is moving
and there is no entity in the
same lane as the ego vehi-
cle within 7 meters, and there
is no red traffic light or stop
sign controlling the ego vehi-
cle’s lane, then the ego vehicle
should not stop.

G(¬isStopped ∧ ¬(isSuperNear ∨ isNearColl)∧
¬hasRed ∧ ¬hasStop∧
X (¬(isSuperNear ∨ isNearColl)∧
¬hasRed ∧ ¬hasStop)→ X (¬isStopped))

2

ψ7 § 46.2-
804

If ego vehicle is not in a junc-
tion, then ego vehicle cannot
be in more than one lane for
more than T seconds (N sam-
ples).

¬F$[N][isMultipleLanes ∧ ¬isJunction] N+1

ψ8 § 46.2-
833

Ego vehicle must exit junc-
tions within T seconds (N
samples).

¬F$[N][isOnlyJunction] N+1

ψ9 § 46.2-
821

Once the ego vehicle detects
a new stop signal controlling
its lane, it must stop before
passing the stop signal.

G((¬hasStop ∧ X (hasStop))
→ (X (hasStop U (isStopped ∨ G(hasStop)))))

4

28

Table 2: Intermediate variables used in Atomic Propositions shown in Table 3

Name SGL expression
egoLanes relSet(Ego, isIn)
egoRoads relSet(egoLanes, isIn)
egoJunctions relSet(egoRoads, isIn)
oppLanes relSet(egoLanes, opposes)

offRoad
filterByAttr(egoLanes, kind,
λx : x = offRoad)

rightLanes relSet(egoLanes, toRightOf)
steerRight filterByAttr(Ego, steer, λx : x > 0)
inEgoLane relSetR(egoLanes, isIn) \ {Ego}
nearColl relSet(inEgoLane,near coll)
superNear relSet(inEgoLane, super near)
egoFasterS filterByAttr(Ego, speed, λx : x > S)
noThrottle filterByAttr(Ego, throttle, λx : x < ϵ)
tLights filterByAttr(G, kind, λx : x = trafficLight)

redLights
filterByAttr(tLights, lightState,
λx : x = Red)

trafLightLns relSet(redLights, controlsTrafficOf)
stopSigns filterByAttr(G, kind, λx : x = stopSign)
stopSignLanes relSet(stopSigns, controlsTrafficOf)
egoStopped filterByAttr(Ego, speed, λx : x < ϵ)
juncRoads relSetR(egoJunctions, isIn)

6.1.2. AV Systems Evaluated812

Each AV takes in a list of waypoints from the route and produces at each813

frame a control for steering, throttle, and brake; each system has different814

sensors and software. Interfuser [75] consists of a Deep Neural Network815

(DNN) with a transformer [76] architecture, and a controller that generates a816

set of actions for ego. It takes 3 images from 3 RGB cameras and a cropped817

center image to focus on distant traffic lights, a LiDAR point cloud, and818

the GPS coordinates and computes a set of waypoints, an object density819

map, traffic light state, stop sign presence, and if the vehicle is in a junction.820

These are fed into the controller to produce the output. TCP [77] takes in 1821

image from an RGB camera, ego’s speed, and the GPS coordinates and uses822

a DNN composed of a CNN-based image encoder using ResNet34 [78], and823

two GRU [79] branches for trajectory and control predictions. LAV [80]824

consists of a perception DNN, motion planner, and controller. The DNN825

consumes 3 images from 3 RGB cameras and a LiDAR point cloud, and826

outputs a BEV map which is fed to the planner along with the next waypoint827

29

Table 3: Atomic Propositions

Atomic Prop. SGL expression
isJunction |egoJunctions| > 0
isOppLane |oppLanes| > 0
isOffRoad |offRoad | > 0
isInRightLane |rightLanes| = 0
isNotSteerRight |steerRight | = 0
isNearColl |nearColl | > 0
isFasterThanS |egoFasterS | = 1
isSuperNear |superNear | > 0
isNoThrottle |noThottle| = 1
isMultipleLanes |egoLanes| > 1
hasRed |trafLightLns ∩ egoLanes| > 0
hasStop |stopSignLanes ∩ egoLanes| > 0
isStopped |egoStopped | = 1
isOnlyJunction |egoRoads \ juncRoads| = 0

coordinates to produce the next 10 future waypoints. The waypoints are828

passed to the controller along with a braking signal from a binary DNN829

classifier to compute the output.830

6.2. RQ#1. SGSM Properties Evaluated831

To evaluate SGSM’s ability to encode safe driving properties relevant to832

AV systems, we selected 9 properties from the laws and best practices of the833

Virginia Driving Code [17]. Laws were selected to yield a set of properties834

within scope of current AV systems and diverse in both temporal aspects835

required to analyze the property compliance and richness of the SG structure836

required to evaluate the APs.837

Table 1 shows the successful encoding of those properties, with their838

relevant statute, a short English summary, and their encoding using the APs839

over the SG* composed through the LTLf formula. Additionally, the number840

of states in the DFA is shown as a measure of temporal complexity. We note841

that precisely encoding the semantics of the law is challenging. Returning842

to the stop sign example, the APs are evaluated over the LTLf formula to843

track if isStopped is true at least once between hasStop becoming true and844

later becoming false, indicating that ego stopped while being controlled by845

the stop sign. This is a necessary but insufficient specification to meet the846

criteria under the law; notably, this does not check that the vehicle stopped847

at the stop line rather than before, nor does it enforce separate stops for848

30

successive stop signs along the same lane.849

As ψ4, ψ7, and ψ8 contain a threshold parameter, we instantiate 3 versions850

of each, for a total of 15 monitors. For ψ4, S ∈ {5, 10, 15}m
s

was chosen to851

represent parking-lot, urban, and suburban driving speeds. For ψ7, empirical852

studies found that lane changes take 4.6s on average with a std dev of 2.3s853

and max of 13.3s [81]; thus we select T ∈ {5, 10, 15}s to represent the average,854

2 std dev, and beyond max. For ψ8, we select T ∈ {5, 10, 15}s as the time to855

clear the intersection as a left turn across a 4 lane road at 10mph takes 5s,856

and we allow for a buffer factor of 1− 3×.857

We note that while some parameters can be expressed in SGL, others are858

reliant on the parameterization of the underlying SGG. In ψ4, ψ5, and ψ6, we859

use 4 and 7 meters as the distance thresholds because these correspond to the860

‘near collision’ and ‘super near’ relationship used by prior AV SGGs [56, 19].861

Further, the underlying laws do not provide concrete values, e.g. the law862

from ψ5 says “[...] a motor vehicle shall not follow [a vehicle] more closely863

than is reasonable and prudent [...]” (emphasis added) [17].864

Table 4: 20 Sections Randomly Selected from the Virginia Driving Code [17]

Applicable
to ego

Expressible
by SGSM

Count Sections

No N/A 10
808, 819.3:1, 819.9, 831, 866,
873, 876, 882.1, 895, 926

Yes
Yes 7 817, 826, 834, 836, 862, 902, 903
No 3 816.1, 854, 921

When examining the driving code [17] we find that our framework,865

equipped with additional entities and attributes, can already encode many866

additional rules. For example, § 46.2-803, 805, and 807 are all variations867

on the theme of § 46.2-804 about where the vehicle can operate checked by868

ψ1 for different situations, e.g. in traffic circles. Similarly, § 46.2-833, 835,869

and 836 describe how vehicles must respond to traffic lights. These can be870

encoded similarly to § 46.2-821 for stopping at stop signs as checked by ψ9.871

However, to obtain a more quantitative grasp of the expressiveness of the872

DSL, we randomly sampled 20 sections, shown in Table 4, of the 207 sections873

of the driving code chapter on the regulation of traffic [17]. Of these, we874

found that 10 applied to AVs while the other 10 were either targeting other875

non-AV entities, e.g. pedestrians, or covered bureaucratic administration of876

the code. Of the 10 applicable to AVs, we find that 7 can be encoded through877

31

SGSM, though some require richer SGs than examined in our implementa-878

tion. For example, § 46.2-817, 834, and 902 concern the AV responding to879

signals from law-enforcement officers directing traffic. If the SGG could iden-880

tify law-enforcement officers as entities in the SG and interpret signals from881

the officer as a relationship between the officer and ego, then SGSM can en-882

code these sections. Of the 3 sections that cannot be encoded in SGSM, one883

section, § 46.2-816.1, cannot be encoded directly because it does not con-884

tain sufficient specificity—the section targets “careless or distracted” driving885

leading to injury; fully and formally specifying this section is beyond the886

scope of SGSM and likely generally intractable. The remaining two sections887

that cannot be encoded concern passing (§ 46.2-854) and following (§ 46.2-888

921) other vehicles. These sections cannot be encoded due to the limitation889

of symbolic entities described in Section 5.1 as passing or following a spe-890

cific vehicle requires tracking that same vehicle through time. Overall, this891

analysis highlights the expressiveness of SGSM and its utility for the task of892

runtime monitoring of safety properties, with SGSM able to encode 70% of893

the applicable properties in this sample.894

RQ# 1 Findings: SGSM is able to successfully encode a wide vari-
ety of safety properties, with this study demonstrating the successful
encoding of 9 properties from the driving code. Further analysis shows
that this generalizes to additional properties based on entities and their
relationships, showing the potential of SGSM to express many safety
driving properties.

895

6.3. RQ#2. Violations Observed896

(a) Interfuser violates ψ1. Missed road curve,
crossed into opp. lane.

(b) LAV violates ψ2. Left turn missed lane and
drove into median.

Figure 6: Interfuser and LAV safety violations identified with SGSM [18].

As described in RQ#1, we derive 15 properties from the Virginia Driving897

Code and use SGSM to implement a monitor for each property. We ran each898

32

AV system through the 10 evaluation scenarios of the CARLA leaderboard899

and separately evaluated all 15 properties at a rate of 2Hz .900

Table 7.1 (left-most set of columns) shows how many of the 10 routes con-901

tained at least one violation for each AV system for each of the properties.902

Note that since the properties are defined as global properties, i.e. once a903

violation occurs it reaches a trap state, we can track only the first violation,904

for a maximum of 10 possible violations per AV system per property. We905

find that the number of violations ranges from 51 for TCP to 72 for Inter-906

fuser (over 150 possible violations). Fig. 6a shows an instance of Interfuser907

violating ψ1; as the road curved to the right, Interfuser did not steer right908

enough and drifted into the opposing lane. Fig. 6b shows LAV violating909

ψ2, turning left through a junction too sharply, exiting the junction into the910

median between two lanes. While this is not off of the road bed, the SGG911

denotes it as off road because it is not part of a defined lane of traffic. Fig. 2912

shows TCP violating ψ9 over a series of frames. TCP approaches a junction913

with a marked stop line, but it does not stop and enters the junction.914

The property violation statistics also give insights into the driving style of915

the AVs. None of the AVs violated ψ4, meaning that they maintained suffi-916

cient follow distance from lead vehicles. However, we also see that Interfuser917

and TCP violated ψ6 over more than half the routes, i.e., they stopped in918

the middle of the roadway. While we do observe 9 cases where this stoppage919

is unjustifiable, in 4 other cases we observe that the AV is stopping due to a920

stopped vehicle ahead of it but farther than the 7 meters prescribed in ψ6,921

and in the remaining 4 cases there is a traffic light that is transitioning out of922

red. This highlights the difficulty in concretizing the parameters used in the923

specification given the imprecise definitions in the driving manual; 7 meters924

may be acceptable depending on circumstances. This is further shown in925

the performance across the parameterizations of ψ7 and ψ8. As T increases,926

the specification is more relaxed which leads to fewer violations; e.g. TCP927

reduces from 8 routes with violations to 0 under ψ8 when T is increased from928

5 to 10. Although TCP eliminates all violations, Interfuser and LAV do not929

improve as rapidly. This may point to different AV’s optimizations; they930

likely did not optimize for junction crossing times, and instead may have931

prioritized moving cautiously through a junction leading to slower transits.932

We note that while ψ3 has an extremely high violation rate with 100%933

of routes yielding at least one violation, this may point to a weakness in934

the implementation of ψ3 rather than of the AVs tested. As discussed in935

Table 1, ψ3 says that if ego is in the rightmost lane then it should not936

33

steer to the right. The underlying goal of this property is that ego should937

stay on the roadway and since the rightmost lane necessarily means there938

is no additional roadway to the right. Thus, the property requires ego to939

not turn right at all in these cases. However, this is very restrictive and940

neglects the myriad of cases when turning right could be correct, e.g., if the941

road is curving to the right. Future refinements of this implementation may942

consider an adjustment of the property to instead require that ego steer no943

sharper right than the road is curving right; however, the existing SGG does944

not annotate the roadway with a notion of curvature, so this information is945

not currently available at execution time. This highlights the importance to946

align the property semantics, encoding, and SGG to ensure that reported947

violations accurately reflect violations of the underlying driving property.948

Overall, this highlights three features of SGSM. First, it showcases how it949

enables the specification and monitoring of driving properties that included950

entities like lanes, vehicles, and traffic signals ; their attributes like speed951

and color ; and their relations like is in, controls, and opposes. Second, it952

shows how SGSM can be parameterized to support a rich set of property953

types, from stateless to temporal, over propositions that are easily accessible954

through the scene graph. Third, it provides evidence of SGSM’s generality955

as per its direct application to monitor three distinct systems.956

RQ# 2 Findings: SGSM is able to operate as a safety monitor to
identify property violations at runtime in a blackbox manner. Unlike
prior approaches, SGSM is able to operate end-to-end, from sensors
to actions, without assuming that certain high-level data is available.
As applied to monitor three state-of-the-art research prototype AV
systems, SGSM identified that the AVs violated 71% of the encoded
safety properties.

957

6.4. RQ#3: SGSM++ Violation Counts and Durations958

Table 5 and Table 6 show the recovery criteria and reset mapping respec-959

tively for each of the properties studied which enable us to investigate the960

count and duration of violations. In their simplest form, each of the studied961

properties have recovery criteria that emit a DFA with no more than two962

states; however, the framework is general to handle arbitrarily complex re-963

covery criteria. For example, consider a more advanced version of ψ1 that964

focused on aggressive or reckless driving. Virginia Driving Code §46.2-868.1965

34

Table 5: Recovery Criteria encoded with SGSM++

Property SGL++ Recovery Criteria
ψ1 isOppLane U ¬isOppLane

ψ
$[30]
1 F$[30][isOppLane]

ψ
$[60]
1 F$[60][isOppLane]

ψ2 isOffRoad U ¬isOffRoad
ψ3 ¬isNotSteerRight U isNotSteerRight
ψ4 (isNearCol → isFasterThanS) U ¬(isNearCol → isFasterThanS)
ψ5 ¬isNoThrottle U isNoThrottle
ψ6 isStopped U ¬isStopped

ψ7
¬(¬isMultipleLanes ∨ isOnlyJunction) U
(¬isMultipleLanes ∨ isOnlyJunction)

ψ8 isOnlyJunction U ¬isOnlyJunction
ψ9 True

Table 6: Reset Mapping encoded with SGSM++

Property SGL++ Reset Mapping

ψ1, ψ
$[30]
1 , ψ

$[60]
1 , ψ2, ψ3, ψ4, ψ5, ψ6, ψ7, ψ8 ¬F last

ψ9 hasStop U(¬hasStop ∨ last)

states that “[...] guilty of aggressive driving if [...] violates one or more of the966

following: §46.2-802 (ψ2) [...] with the intent to harass, intimidate, injure or967

obstruct.” Further, §46.2-852 states that “[driving] recklessly or at a speed968

or in a manner so as to endanger the life, limb, or property of any person969

shall be guilty of reckless driving.” In this case, a stronger recovery criteria970

may be desired that, e.g., ensures that the vehicle has not crossed into the971

opposing lane for a certain duration before it could be considered no longer in972

violation. This would allow for the encoding of aggressive or reckless driving973

in the form of, e.g., repeated swerving across the center line as one violation.974

The recovery condition given by F$[N][¬isOppLane] will cause the violation975

to end only when the AV has been not in the opposing lane for N consecutive976

time steps. We investigate this property as ψ
$[N]
1 for N = 30 (15 seconds)977

and N = 60 (30 seconds).978

Note that the recovery criteria sets the minimal number of steps required979

for recovery and thus the minimal duration of all violations. This minimal980

duration is exactly the length of the shortest path between the initial state981

and the accepting state of the DFA emitted by the recovery criteria. In the982

case of the automatic recovery given by the condition True, this distance is983

35

zero since the initial state is also the accept state. For the single condition984

criteria described in Section 4.2 given by a U ¬a, this distance is one since,985

on the step that the property was violated, the condition a was True, so986

it must take at least one step for a to be False; this can be seen visually987

in the lower half of Fig. 5 for ψ1. In the more involved case about reckless988

driving, the distance and thus minimal duration is N . This minimal duration989

is important to consider when interpreting the results and comparing across990

properties, e.g. for large values of N a violation of duration N may appear to991

be poor behavior in absolute terms but actually be optimal for that particular992

property violation.993

Whereas Table 7.1 shows the number of routes with at least one vio-994

lation, Table 7.2 (middle-left) shows the total number of violations across995

all routes. Further, Tables 7.3 (middle-right) and 7.4 (right-most) show the996

total duration over all violations, and maximum duration of any single vio-997

lation respectively in terms of the number of frames over which the violation998

persisted. Each frame is 0.5 seconds.999

First, by comparing Table 7.1 and Table 7.2, we see that almost all prop-1000

erties are violated more than once on at least one route since the total count1001

of violations is greater than the number of routes that had a violation. For1002

some cases, this is markedly so as in ψ3. As noted in Section 6.3, ψ3’s imple-1003

mentation is stricter than the underlying goal property; this is further made1004

clear by the violation counts shown with over half (823/1405=59%) of all1005

violations observed across all properties coming from ψ3.1006

Second, by examining the count and duration we can gain an even clearer1007

picture of the differing driving styles, strengths, and weaknesses of the differ-1008

ent AV systems. As noted in Section 6.3, Interfuser and TCP violate ψ6 at1009

least once in over half of the routes, indicating that they stopped for no rea-1010

son. While the number of routes with a violation makes Interfuser and TCP1011

seem similar with violations in 9 routes and 6 routes respectively, the count of1012

violations paints a much clearer picture with Interfuser having 141 violations1013

to only 24 for TCP, indicating a clear pattern of violation for Interfuser while1014

TCP’s may have been separate isolated incidents. Further, examining the1015

duration of violations in Tables 7.3 and 7.4 shows that when TCP did violate1016

ψ6 it always recovered on the next frame; meanwhile, Interfuser spent almost1017

6000 frames, just shy of a third of the 18133 total frames (5812/18133=32%)1018

stopped for no reason, an average of over 40 frames per violation. This be-1019

havior appears to be a known weakness of Interfuser—examining its internal1020

36

code, its controller2 contains logic that tracks how long it has been stopped1021

for and forces the AV to drive forward if it exceeds a predefined threshold of1022

60 seconds which is very close to our observed maximum violation duration1023

of 117 frames or 58.5 seconds. This behavior is also related to the longest du-1024

ration violation observed, where Interfuser violates ψT=5
7 for 1110 frames or 91025

minutes and 15 seconds. Examining the data, we see that Interfuser stopped1026

between lanes, and although it moved slightly at least every 58.5 seconds per1027

the data for ψ6, it did not complete the transition between lanes—the test1028

ended while the system was still in violation.1029

An additional valuable use case for this data is the identification of weak-1030

nesses common across SUTs. Whereas Table 7.1 shows that the SUTs fail to1031

stop at a stop sign at least once in 70% of the routes, the results in Table 7.21032

show that the SUTs failed to stop at a combined 63 stop signs, with each1033

SUT missing at least 20. As discussed in Section 6.1.1, the test routes have1034

the SUT transit 27 stop signs in total; thus, the SUTs collectively failed to1035

stop at 63/81=78% of all stop signs. This information helps to clarify that1036

it is not simply a few problematic intersections that cause the SUTs to fail1037

once or twice per route, but instead the SUTs demonstrate pervasive and1038

consistent difficulty in stopping at stop signs.1039

These data also provide us with a basis to evaluate the more complex reset1040

criteria studied for ψ1 that can be used for judging, e.g. reckless driving.1041

Recall that ψ1 checks if ego is in the opposing lane. Recovering from ψ11042

requires ego to not be in the opposing lane for a single frame, while ψ
$[30]
11043

and ψ
$[60]
1 require ego to not be in the opposing lane for 30 and 60 frames,1044

or 15 and 30 seconds, respectively. Examining the total number of violations1045

shown in Table 7.2 for LAV, we see that for the increasingly strict reset1046

criteria, the number of violations goes from 8 to 7 to 6. The drop from1047

8 violations to 7 violations between ψ1 and ψ
$[30]
1 indicates that there were1048

two separate violations that were more than 1 frame apart but less than1049

30 frames apart. Likewise, the drop from 7 to 6 between ψ
$[30]
1 and ψ

$[60]
11050

indicates violations that are greater than 30 but less than 60 frames apart.1051

As noted in Section 4.2, the minimum recovery time of ψ
$[30]
1 is 30 frames;1052

however, looking at the maximum recovery time for LAV in Table 7.4, it is1053

75 frames, this is partially due to the second violation causing the 30 second1054

count to reset, leading to a much longer duration of violation. This effectively1055

2https://github.com/opendilab/InterFuser/.../interfuser controller.py#L262

37

https://github.com/opendilab/InterFuser/blob/4145d6ca58c19ce2a29d319c47980cea05586b06/leaderboard/team_code/interfuser_controller.py#L262

demonstrates SGSM++’s ability to both encode and measure these complex1056

counting and duration properties.1057

RQ# 3 Findings: SGSM++ successfully extends the functionality of
SGSM by enriching the understanding of violation to include both the
count and duration of violation. This allows for fine-grained analysis to
identify, e.g., that not only did the three SUTs cross into the opposing
lane in 15 different tests, they did so a combined 19 separate times for
a total duration of 39 seconds and a maximum duration of 9.5 seconds.
This significantly improves the practical utility of SGSM++ to be used
as a safety monitor in practice.

1058

6.5. Threats of validity1059

In this study we showed the feasibility of implementing SGSM and its1060

utility for checking safety property specifications based on driving rules. The1061

external validity of our results, however, is bounded by our use of simulation1062

to create the SGs using ground truth data. Working in simulation enabled us1063

to construct an SGG module that generates high-quality SG representations1064

of the world to judge the cost-effectiveness of the framework as a whole, but1065

we recognize that it will be necessary to consider SGGs using various sensor1066

types and in the wild. The CARLA simulator used in our study may dif-1067

fer from other deployment scenarios, including other simulators based on its1068

particular design goals; further analysis in varied simulation environments is1069

needed to understand the generality of the framework. Moreover, CARLA1070

suffers from the simulation-reality gap [82], so deploying the approach in the1071

real world will be necessary to assess its true potential in the field. The re-1072

sults do provide evidence of the SGSM viability for monitoring richer driving1073

properties, but its violation detection effectiveness will depend on the qual-1074

ity of the systems under test and the scenarios under which those systems1075

are exercised. We explored 3 systems competing under a CARLA bench-1076

marking challenge and a set of predefined scenarios. Pushing SGSM towards1077

commercial systems and richer scenarios will also contribute to generalize1078

the findings. Similarly, more complex domain properties including those in-1079

volving the behavior of multiple entities over time should be specified and1080

checked to further evaluate the expressiveness and generality of SGSM.1081

The internal validity of our results is mainly affected by our implementa-1082

tion of SGSM and by our interpretation and encoding of the properties. We1083

38

T
a
b
le

7
:
F
u
ll
S
tu
d
y
R
esu

lts
fo
r
th
e
S
U
T
s
In
terfu

ser
[7
5
],
T
C
P

[7
7
],
an

d
L
A
V

[80].

7
.1:

#
R
ou

tes
w
ith
≥

1
V
iolation

(R
Q
#
2)

7.2:
T
ota

l
#

V
io
la
tion

s
(R

Q
#
3)

7.3:
T
otal

D
u
ration

(#
F
ram

es)
(R

Q
#
3)

7.4:
M
ax

D
u
ration

(#
F
ram

es)
(R

Q
#
3)

S
U
T

[75]
[77]

[80]
S
u
m

[75]
[7
7
]

[80]
S
u
m

[7
5]

[7
7]

[80]
S
u
m

[75]
[77

]
[8
0]

M
ax

ψ
1

3
6

6
15

4
7

8
1
9

1
0

18
50

78
4

5
1
9

1
9

ψ
$
[3
0
]

1
S
ee

R
Q
#
3

15
4

7
7

1
8

126
2
21

24
3

5
90

3
3

34
75

7
5

ψ
$
[6
0
]

1
S
ee

R
Q
#
3

15
4

7
6

1
7

246
4
31

37
6

105
3

6
3

64
148

148

ψ
2

0
0

1
1

0
0

2
2

0
0

17
17

0
0

1
1

1
1

ψ
3

10
10

10
30

127
2
3
9

457
823

22
99

201
6

44
16

873
1

238
9
7

1
45

238

ψ
S
=
5

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

ψ
S
=
1
0

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

ψ
S
=
1
5

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

ψ
5

3
2

3
8

3
2

5
1
0

1
8

27
13

58
1
4

25
4

2
5

ψ
6

9
6

3
*

18
141

2
4

11
176

58
12

2
4

11
584

7
117

1
1

117

ψ
T
=
5

7
10

5
8

23
22

9
18

4
9

22
37

16
0

344
274

1
11

10
55

6
5

11
10

ψ
T
=
1
0

7
5

3
6

14
9

3
9

2
1

21
03

10
5

187
239

5
11

00
45

5
5

11
00

ψ
T
=
1
5

7
5

3
5

13
7

3
7

1
7

20
27

7
5

110
221

2
10

90
35

4
5

10
90

ψ
T
=
5

8
10

8
10

28
43

2
5

66
134

12
58

5
5

396
170

9
608

8
40

608

ψ
T
=
1
0

8
5

0
6

11
5

0
8

1
3

10
90

0
55

114
5

598
0

30
598

ψ
T
=
1
5

8
5

0
1

6
5

0
1

6
10

40
0

20
106

0
588

0
20

588

ψ
9

7
7
*

7
21

20
2
3

20
6
3

0
0

0
0

0
0

0
0

S
u
m

72
50

66
188

394
3
4
9

625
13

68
1826

6
3
132

62
38

2
7636

55
63

369
65

8
57

27

M
ax

10
10

10
30

141
2
3
9

457
823

58
12

201
6

44
16

873
1

11
10

97
14

8
11

10

*W
e
id
en
tifi

ed
an

d
fi
x
ed

an
error

in
th
e
in
fra

stru
ctu

re
fo
r
scen

e
g
rap

h
g
en

eration
u
sed

in
p
rio

r
w
o
rk

[1
8],

w
h
ich

is
w
h
y

th
ese

n
u
m
b
ers

d
iff
er

from
th
e
earlier

rep
ort

(3
*
u
sed

to
b
e
2
,
a
n
d
7*

u
sed

to
b
e
8
).

39

worked extensively to review the findings from utilizing SGSM to understand1084

and validate that the implemented properties over the SGs faithfully encoded1085

the desired semantics of the specification. Yet, SGs are always an approx-1086

imation of the real environment attenuated by the SGG through sensors,1087

perception, and other implementation artifacts. As such, the scene graph1088

could include additional entities, not include other entities, or mis-relate cer-1089

tain entities relative to the real environment. For example, we identified a1090

failure of the SG generation wherein the SGG consistently fails to accurately1091

capture the stop sign for one of the intersections. As such, SGSM cannot1092

monitor for violations of ψ9 at that intersection, and the relevant results of1093

Section 6.4 may under count the stop sign violations by 1 for each of the1094

SUTs. We leave to future work investigating, characterizing, and improving1095

the robustness of SGSM with respect to the effects of these approximations.1096

To mitigate this threat we have released an artifact containing the relevant1097

system and data.1098

6.5.1. Potential for Field Deployments of SGSM++1099

Two principle factors impact the potential application of SGSM++ in the1100

real world as a runtime monitor: accuracy and efficiency of its implementa-1101

tion. Our experimental design relied on using the CARLA simulator and its1102

Python API; this allowed our study to produce high-quality SGs and gener-1103

ate the SGs in a manner decoupled from the simulator’s internal timing. As1104

discussed, these factors allowed us to examine the expressiveness and utility1105

of SGSM++ in this initial exploration and limit our ability to reason about1106

the potential impacts of SGSM++’s accuracy and timing. The accuracy of1107

SGSM++ is solely affected by the accuracy of the SGG used. The ability1108

of SGSM++ to meet the real-time requirements for field application are af-1109

fected by the time required for the SGG to create the SG and the time for1110

SGSM++ to evaluate the property over the SG.1111

We first comment on the accuracy and efficiency of current SGGs. Prior1112

research has conducted initial studies on the accuracy and timing of current1113

research-prototype SGGs on real-world camera images [19]. This exploration1114

found that only 60% of SGs were fully accurate in a small-scale study. Fur-1115

ther, the time required for the SGG varied greatly based on the size of the1116

image, ranging from just under 1 second per image for low-resolution images1117

under 100,000 pixels to just over 5 seconds per image for HD images around 21118

million pixels on a system with 32 cores and 4 GTX1080Ti GPUs [19]. Over-1119

all, this low accuracy, slow performance, and required hardware present sub-1120

40

stantial obstacles for the implementation of SGSM++ using current SGGs.1121

However, the SGG studied was a research prototype that was not intended1122

for real-time application; we hope that our results will spur future research1123

into optimizing SGGs for real-time application.1124

As for the time SGSM++ takes to process the SGs and evaluate the prop-1125

erties, as discussed in Section 6.1.1, initial evaluations showed that each SG1126

took less than 100ms to process in our un-optimized Python implementation.1127

This is very promising for real-time application of SGSM++ for runtime mon-1128

itoring as it indicates that the approach adds a proportionally small overhead1129

compared to generating the SGs themselves. We believe that improvements1130

in the SGG, as shown in recent benchmarks [30, 31], and optimizations in1131

the monitor implementation could push these times to be practicable for1132

application as a real-time monitor.1133

7. Conclusion1134

Providing assurances that AVs abide by safe driving properties is key1135

to their successful deployment. However, specifying and monitoring such1136

properties is challenging as they involve reasoning about not only the AV1137

but also its relationship with other entities in the real environment, and1138

such information is not readily accessible. Our previous work introduced the1139

Scene Graph Safety Monitoring (SGSM) framework to better support the1140

specification of safe driving properties and their automatic synthesis into an1141

AV runtime monitor to detect and characterize property violations. In this1142

work, we provide further analysis and formalization of SGSM and extend the1143

framework to produce SGSM++, which captures the semantics of resetting a1144

property violation, allowing the monitor to count the quantity and duration1145

of violations. The study shows the expressiveness of the DSL for specifying1146

9 real driving properties including the ability to reset these properties for1147

continuous monitoring and the potential for generalization to a broad range1148

of safe driving properties. The study further demonstrates the generality1149

of the monitoring mechanism through its application to 3 off-the-shelf AV1150

systems where it uncovers various driving violations. We find that these AV1151

systems together violate 71% of the properties at least one time, including1152

almost 1400 unique violations over 30 test executions, with violations lasting1153

up to 9.25 minutes; additionally, the AVs fail to stop at stop signs in 78% of1154

cases.1155

41

Acknowledgements1156

This work was supported in part by the National Science Foundation1157

through grant #2129824 and #2312487, the U.S. Army Research Office un-1158

der grant number W911NF-24-1-0089, and Lockheed Martin Advanced Tech-1159

nology Labs. Trey Woodlief was supported by a University of Virginia SEAS1160

Fellowship. The authors acknowledge Research Computing at The Univer-1161

sity of Virginia for providing computational resources and technical support1162

that have contributed to the results reported within this publication.1163

References1164

[1] R. Bellan, Cruise inches into waymo’s territory in the phoenix area,1165

accessed on 02.07.2024 (Aug 2023).1166

URL https://techcrunch.com/2023/08/08/cruise-inches-into-1167

waymos-territory-in-the-phoenix-area/1168

[2] R. Bellan, Cruise and waymo win robotaxi expansions in san francisco,1169

accessed on 02.07.2024 (Aug 2023).1170

URL https://techcrunch.com/2023/08/10/cruise-and-waymo-1171

win-robotaxi-expansions-in-san-francisco/1172

[3] A. Marshall, Uber video shows the kind of crash self-driving cars are1173

made to avoid, accessed on 02.07.2024 (Mar 2018).1174

URL https://www.wired.com/story/uber-self-driving-crash-1175

video-arizona/1176

[4] N. Board, Collision between vehicle controlled by developmental au-1177

tomated driving system and pedestrian. nat. transpot. saf. board,1178

washington, dc, Tech. rep., USA, Tech. Rep. HAR-19-03, 2019. URL1179

https://www. ntsb. gov/investigations . . . (2019).1180

[5] B. Templeton, Tesla in taiwan crashes directly into overturned truck,1181

ignores pedestrian, with autopilot on, ForbesAccessed on 02.07.20241182

(Jun 2020).1183

URL https://www.forbes.com/sites/bradtempleton/2020/06/02/1184

tesla-in-taiwan-crashes-directly-into-overturned-truck-1185

ignores-pedestrian-with-autopilot-on/?sh=20a7458f58e5link1186

42

https://techcrunch.com/2023/08/08/cruise-inches-into-waymos-territory-in-the-phoenix-area/
https://techcrunch.com/2023/08/08/cruise-inches-into-waymos-territory-in-the-phoenix-area/
https://techcrunch.com/2023/08/08/cruise-inches-into-waymos-territory-in-the-phoenix-area/
https://techcrunch.com/2023/08/08/cruise-inches-into-waymos-territory-in-the-phoenix-area/
https://techcrunch.com/2023/08/10/cruise-and-waymo-win-robotaxi-expansions-in-san-francisco/
https://techcrunch.com/2023/08/10/cruise-and-waymo-win-robotaxi-expansions-in-san-francisco/
https://techcrunch.com/2023/08/10/cruise-and-waymo-win-robotaxi-expansions-in-san-francisco/
https://techcrunch.com/2023/08/10/cruise-and-waymo-win-robotaxi-expansions-in-san-francisco/
https://www.wired.com/story/uber-self-driving-crash-video-arizona/
https://www.wired.com/story/uber-self-driving-crash-video-arizona/
https://www.wired.com/story/uber-self-driving-crash-video-arizona/
https://www.wired.com/story/uber-self-driving-crash-video-arizona/
https://www.wired.com/story/uber-self-driving-crash-video-arizona/
https://www.wired.com/story/uber-self-driving-crash-video-arizona/
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on/?sh=20a7458f58e5link
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on/?sh=20a7458f58e5link
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on/?sh=20a7458f58e5link
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on/?sh=20a7458f58e5link
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on/?sh=20a7458f58e5link
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on/?sh=20a7458f58e5link
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on/?sh=20a7458f58e5link
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on/?sh=20a7458f58e5link

[6] N. E. Boudette, N. Chokshi, U.s. will investigate tesla’s autopilot1187

system over crashes with emergency vehicles, New York TimesAccessed1188

on 02.07.2024 (Aug 2021).1189

URL https://www.nytimes.com/2021/08/16/business/tesla-1190

autopilot-nhtsa.html1191

[7] R. Bellan, A waymo self-driving car killed a dog in ‘unavoidable’1192

accident, accessed on 02.07.2024 (Jun 2023).1193

URL https://techcrunch.com/2023/06/06/a-waymo-self-1194

driving-car-killed-a-dog-in-unavoidable-accident/1195

[8] T. Victor, K. Kusano, T. Gode, R. Chen, M. Schwall, Safety perfor-1196

mance of the waymo rider-only automated driving system at one million1197

miles, Tech. rep., accessed on 02.07.2024 (February 2023).1198

URL https://storage.googleapis.com/sdc-prod/v1/safety-1199

report/Waymo-Safety-Methodologies-and-Readiness-1200

Determinations.pdf1201

[9] L. Zhang, Cruise’s safety record over 1 million driverless miles, accessed1202

on 02.07.2024 (Apr 2023).1203

URL https://getcruise.com/news/blog/2023/cruises-safety-1204

record-over-one-million-driverless-miles/1205

[10] H. Araujo, M. R. Mousavi, M. Varshosaz, Testing, validation, and veri-1206

fication of robotic and autonomous systems: A systematic review, ACM1207

Trans. Softw. Eng. Methodol. 32 (2) (mar 2023). doi:10.1145/3542945.1208

URL https://doi.org/10.1145/35429451209

[11] N. Mehdipour, M. Althoff, R. D. Tebbens, C. Belta, Formal meth-1210

ods to comply with rules of the road in autonomous driving: State1211

of the art and grand challenges, Automatica 152 (2023) 110692.1212

doi:https://doi.org/10.1016/j.automatica.2022.110692.1213

URL https://www.sciencedirect.com/science/article/pii/1214

S00051098220055681215

[12] K. Watanabe, E. Kang, C.-W. Lin, S. Shiraishi, Runtime monitoring for1216

safety of intelligent vehicles, in: Proceedings of the 55th annual design1217

automation conference, 2018, pp. 1–6.1218

43

https://www.nytimes.com/2021/08/16/business/tesla-autopilot-nhtsa.html
https://www.nytimes.com/2021/08/16/business/tesla-autopilot-nhtsa.html
https://www.nytimes.com/2021/08/16/business/tesla-autopilot-nhtsa.html
https://www.nytimes.com/2021/08/16/business/tesla-autopilot-nhtsa.html
https://www.nytimes.com/2021/08/16/business/tesla-autopilot-nhtsa.html
https://www.nytimes.com/2021/08/16/business/tesla-autopilot-nhtsa.html
https://techcrunch.com/2023/06/06/a-waymo-self-driving-car-killed-a-dog-in-unavoidable-accident/
https://techcrunch.com/2023/06/06/a-waymo-self-driving-car-killed-a-dog-in-unavoidable-accident/
https://techcrunch.com/2023/06/06/a-waymo-self-driving-car-killed-a-dog-in-unavoidable-accident/
https://techcrunch.com/2023/06/06/a-waymo-self-driving-car-killed-a-dog-in-unavoidable-accident/
https://techcrunch.com/2023/06/06/a-waymo-self-driving-car-killed-a-dog-in-unavoidable-accident/
https://techcrunch.com/2023/06/06/a-waymo-self-driving-car-killed-a-dog-in-unavoidable-accident/
https://storage.googleapis.com/sdc-prod/v1/safety-report/Waymo-Safety-Methodologies-and-Readiness-Determinations.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/Waymo-Safety-Methodologies-and-Readiness-Determinations.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/Waymo-Safety-Methodologies-and-Readiness-Determinations.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/Waymo-Safety-Methodologies-and-Readiness-Determinations.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/Waymo-Safety-Methodologies-and-Readiness-Determinations.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/Waymo-Safety-Methodologies-and-Readiness-Determinations.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/Waymo-Safety-Methodologies-and-Readiness-Determinations.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/Waymo-Safety-Methodologies-and-Readiness-Determinations.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/Waymo-Safety-Methodologies-and-Readiness-Determinations.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/Waymo-Safety-Methodologies-and-Readiness-Determinations.pdf
https://getcruise.com/news/blog/2023/cruises-safety-record-over-one-million-driverless-miles/
https://getcruise.com/news/blog/2023/cruises-safety-record-over-one-million-driverless-miles/
https://getcruise.com/news/blog/2023/cruises-safety-record-over-one-million-driverless-miles/
https://getcruise.com/news/blog/2023/cruises-safety-record-over-one-million-driverless-miles/
https://doi.org/10.1145/3542945
https://doi.org/10.1145/3542945
https://doi.org/10.1145/3542945
https://doi.org/10.1145/3542945
https://doi.org/10.1145/3542945
https://www.sciencedirect.com/science/article/pii/S0005109822005568
https://www.sciencedirect.com/science/article/pii/S0005109822005568
https://www.sciencedirect.com/science/article/pii/S0005109822005568
https://www.sciencedirect.com/science/article/pii/S0005109822005568
https://www.sciencedirect.com/science/article/pii/S0005109822005568
https://doi.org/https://doi.org/10.1016/j.automatica.2022.110692
https://www.sciencedirect.com/science/article/pii/S0005109822005568
https://www.sciencedirect.com/science/article/pii/S0005109822005568
https://www.sciencedirect.com/science/article/pii/S0005109822005568

[13] J. Stamenkovich, L. Maalolan, C. Patterson, Formal assurances for1219

autonomous systems without verifying application software, in: 20191220

Workshop on Research, Education and Development of Unmanned1221

Aerial Systems (RED UAS), IEEE, 2019, pp. 60–69.1222

[14] A. Kane, O. Chowdhury, A. Datta, P. Koopman, A case study on run-1223

time monitoring of an autonomous research vehicle (arv) system, in:1224

Runtime Verification: 6th International Conference, RV 2015, Vienna,1225

Austria, September 22-25, 2015. Proceedings, Springer, 2015, pp. 102–1226

117.1227

[15] M. Mauritz, F. Howar, A. Rausch, Assuring the safety of advanced driver1228

assistance systems through a combination of simulation and runtime1229

monitoring, in: Leveraging Applications of Formal Methods, Verifica-1230

tion and Validation: Discussion, Dissemination, Applications: 7th In-1231

ternational Symposium, ISoLA 2016, Imperial, Corfu, Greece, October1232

10-14, 2016, Proceedings, Part II 7, Springer, 2016, pp. 672–687.1233

[16] K. Leach, C. S. Timperley, K. Angstadt, A. Nguyen-Tuong, J. Hiser,1234

A. Paulos, P. Pal, P. Hurley, C. Thomas, J. W. Davidson, et al., Start:1235

A framework for trusted and resilient autonomous vehicles (practical1236

experience report), in: 2022 IEEE 33rd International Symposium on1237

Software Reliability Engineering (ISSRE), IEEE, 2022, pp. 73–84.1238

[17] Virginia code title 46.2 chapter 8 - motor vehicles, regulation of traffic.1239

[18] F. Toledo, T. Woodlief, S. Elbaum, M. B. Dwyer, Specifying and mon-1240

itoring safe driving properties with scene graphs, in: 2024 IEEE Inter-1241

national Conference on Robotics and Automation (ICRA), IEEE, 2024.1242

[19] T. Woodlief, F. Toledo, S. Elbaum, M. B. Dwyer, S3c: Spatial seman-1243

tic scene coverage for autonomous vehicles, in: 2024 IEEE/ACM 46th1244

International Conference on Software Engineering (ICSE ’24), ACM,1245

2024.1246

[20] G. De Giacomo, M. Y. Vardi, Linear temporal logic and linear dynamic1247

logic on finite traces, in: IJCAI’13 Proceedings of the Twenty-Third1248

international joint conference on Artificial Intelligence, Association for1249

Computing Machinery, 2013, pp. 854–860.1250

44

[21] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, CARLA:1251

An open urban driving simulator, in: Proceedings of the 1st Annual1252

Conference on Robot Learning, 2017, pp. 1–16.1253

[22] A. Desai, T. Dreossi, S. A. Seshia, Combining model checking and run-1254

time verification for safe robotics, in: International Conference on Run-1255

time Verification, Springer, 2017, pp. 172–189.1256

[23] E. Zapridou, E. Bartocci, P. Katsaros, Runtime verification of au-1257

tonomous driving systems in carla, in: International Conference on Run-1258

time Verification, Springer, 2020, pp. 172–183.1259

[24] R. Castelino, K. Rothemann, A. Lamm, A. Hahn, Connected vehicle1260

perception monitoring: A runtime verification approach for enhanced1261

autonomous driving safety, in: Proceedings of the 10th International1262

Conference on Vehicle Technology and Intelligent Transport Systems -1263

Volume 1: VEHITS, INSTICC, SciTePress, 2024, pp. 402–409. doi:1264

10.5220/0012696400003702.1265

[25] C. Morse, L. Feng, M. Dwyer, S. Elbaum, A framework for the un-1266

supervised inference of relations between sensed object spatial distri-1267

butions and robot behaviors, in: 2023 IEEE International Confer-1268

ence on Robotics and Automation (ICRA), 2023, pp. 901–908. doi:1269

10.1109/ICRA48891.2023.10161071.1270

[26] A. Matos Pedro, T. Silva, T. Sequeira, J. a. Lourenço, J. a. C. Seco,1271

C. Ferreira, Monitoring of spatio-temporal properties with nonlinear sat1272

solvers, Int. J. Softw. Tools Technol. Transf. 26 (2) (2024) 169–188.1273

doi:10.1007/s10009-024-00740-7.1274

URL https://doi.org/10.1007/s10009-024-00740-71275

[27] B. Yalcinkaya, H. Torfah, A. Desai, S. A. Seshia, Ulgen: A runtime as-1276

surance framework for programming safe cyber-physical systems, IEEE1277

Transactions on Computer-Aided Design of Integrated Circuits and Sys-1278

tems (2023).1279

[28] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, U. Topcu,1280

Safe reinforcement learning via shielding, in: Proceedings of the AAAI1281

conference on artificial intelligence, Vol. 32, 2018.1282

45

https://doi.org/10.5220/0012696400003702
https://doi.org/10.5220/0012696400003702
https://doi.org/10.5220/0012696400003702
https://doi.org/10.1109/ICRA48891.2023.10161071
https://doi.org/10.1109/ICRA48891.2023.10161071
https://doi.org/10.1109/ICRA48891.2023.10161071
https://doi.org/10.1007/s10009-024-00740-7
https://doi.org/10.1007/s10009-024-00740-7
https://doi.org/10.1007/s10009-024-00740-7
https://doi.org/10.1007/s10009-024-00740-7
https://doi.org/10.1007/s10009-024-00740-7

[29] B. Könighofer, J. Rudolf, A. Palmisano, M. Tappler, R. Bloem, Online1283

shielding for reinforcement learning, Innovations in Systems and Soft-1284

ware Engineering (2022) 1–16.1285

[30] PapersWithCode, Scene graph generation on visual genome, accessed1286

on 08.20.2024 (2023).1287

URL https://paperswithcode.com/sota/scene-graph-generation-1288

on-visual-genome?metric=mean%20Recall%20%40201289

[31] PapersWithCode, Panoptic scene graph generation on psg dataset,1290

accessed on 08.20.2024 (2023).1291

URL https://paperswithcode.com/sota/panoptic-scene-graph-1292

generation-on-psg1293

[32] A. Farid, S. Veer, B. Ivanovic, K. Leung, M. Pavone, Task-relevant1294

failure detection for trajectory predictors in autonomous vehicles, in:1295

Conference on Robot Learning, PMLR, 2023, pp. 1959–1969.1296

[33] C. Luo, R. Wang, Y. Jiang, K. Yang, Y. Guan, X. Li, Z. Shi, Runtime1297

verification of robots collision avoidance case study, in: 2018 IEEE 42nd1298

Annual Computer Software and Applications Conference (COMPSAC),1299

Vol. 1, IEEE, 2018, pp. 204–212.1300

[34] H. Wu, D. Lyu, Y. Zhang, G. Hou, M. Watanabe, J. Wang, W. Kong,1301

A verification framework for behavioral safety of self-driving cars, IET1302

Intelligent Transport Systems 16 (5) (2022) 630–647.1303

[35] M. Schwammberger, Distributed controllers for provably safe, live and1304

fair autonomous car manoeuvres in urban traffic, 2021.1305

URL https://api.semanticscholar.org/CorpusID:2372983721306

[36] R. Wang, Y. Wei, H. Song, Y. Jiang, Y. Guan, X. Song, X. Li, From of-1307

fline towards real-time verification for robot systems, IEEE Transactions1308

on Industrial Informatics 14 (4) (2018) 1712–1721.1309

[37] J. Huang, C. Erdogan, Y. Zhang, B. Moore, Q. Luo, A. Sundaresan,1310

G. Rosu, Rosrv: Runtime verification for robots, in: Runtime Verifi-1311

cation: 5th International Conference, RV 2014, Toronto, ON, Canada,1312

September 22-25, 2014. Proceedings 5, Springer, 2014, pp. 247–254.1313

46

https://paperswithcode.com/sota/scene-graph-generation-on-visual-genome?metric=mean%20Recall%20%4020
https://paperswithcode.com/sota/scene-graph-generation-on-visual-genome?metric=mean%20Recall%20%4020
https://paperswithcode.com/sota/scene-graph-generation-on-visual-genome?metric=mean%20Recall%20%4020
https://paperswithcode.com/sota/scene-graph-generation-on-visual-genome?metric=mean%20Recall%20%4020
https://paperswithcode.com/sota/panoptic-scene-graph-generation-on-psg
https://paperswithcode.com/sota/panoptic-scene-graph-generation-on-psg
https://paperswithcode.com/sota/panoptic-scene-graph-generation-on-psg
https://paperswithcode.com/sota/panoptic-scene-graph-generation-on-psg
https://api.semanticscholar.org/CorpusID:237298372
https://api.semanticscholar.org/CorpusID:237298372
https://api.semanticscholar.org/CorpusID:237298372
https://api.semanticscholar.org/CorpusID:237298372

[38] S. Kochanthara, T. Singh, A. Forrai, L. Cleophas, Safety of perception1314

systems for automated driving: A case study on apollo, ACM Transac-1315

tions on Software Engineering and Methodology 33 (3) (2024) 1–28.1316

[39] H. Torfah, C. Xie, S. Junges, M. Vazquez-Chanlatte, S. A. Seshia, Learn-1317

ing monitorable operational design domains for assured autonomy, in:1318

International Symposium on Automated Technology for Verification and1319

Analysis, Springer, 2022, pp. 3–22.1320

[40] F. Yang, S. S. Zhan, Y. Wang, C. Huang, Q. Zhu, Case study: Runtime1321

safety verification of neural network controlled system, in: International1322

Conference on Runtime Verification, Springer, 2024, pp. 205–217.1323

[41] J. Grieser, M. Zhang, T. Warnecke, A. Rausch, Assuring the safety of1324

end-to-end learning-based autonomous driving through runtime moni-1325

toring, in: 2020 23rd Euromicro Conference on Digital System Design1326

(DSD), IEEE, 2020, pp. 476–483.1327

[42] J. Anderson, G. Fainekos, B. Hoxha, H. Okamoto, D. Prokhorov, Pat-1328

tern matching for perception streams, in: International Conference on1329

Runtime Verification, Springer, 2023, pp. 251–270.1330

[43] A. Balakrishnan, J. Deshmukh, B. Hoxha, T. Yamaguchi, G. Fainekos,1331

Percemon: online monitoring for perception systems, in: Runtime Verifi-1332

cation: 21st International Conference, RV 2021, Virtual Event, October1333

11–14, 2021, Proceedings 21, Springer, 2021, pp. 297–308.1334

[44] D. Grundt, A. Köhne, I. Saxena, R. Stemmer, B. Westphal,1335

E. Möhlmann, Towards runtime monitoring of complex system1336

requirements for autonomous driving functions, arXiv preprint1337

arXiv:2209.14032 (2022).1338

[45] M. Zipfl, N. Koch, J. M. Zöllner, A comprehensive review on ontologies1339

for scenario-based testing in the context of autonomous driving, in: 20231340

IEEE Intelligent Vehicles Symposium (IV), 2023, pp. 1–7. doi:10.1109/1341

IV55152.2023.10186681.1342

[46] F. Klueck, Y. Li, M. Nica, J. Tao, F. Wotawa, Using ontologies for1343

test suites generation for automated and autonomous driving func-1344

tions, in: 2018 IEEE International Symposium on Software Relia-1345

47

https://doi.org/10.1109/IV55152.2023.10186681
https://doi.org/10.1109/IV55152.2023.10186681
https://doi.org/10.1109/IV55152.2023.10186681

bility Engineering Workshops (ISSREW), 2018, pp. 118–123. doi:1346

10.1109/ISSREW.2018.00-20.1347

[47] F. Wotawa, J. Bozic, Y. Li, Ontology-based testing: An emerging1348

paradigm for modeling and testing systems and software, in: 20201349

IEEE International Conference on Software Testing, Verification and1350

Validation Workshops (ICSTW), 2020, pp. 14–17. doi:10.1109/1351

ICSTW50294.2020.00020.1352

[48] S. Ulbrich, T. Nothdurft, M. Maurer, P. Hecker, Graph-based context1353

representation, environment modeling and information aggregation for1354

automated driving, in: 2014 IEEE Intelligent Vehicles Symposium Pro-1355

ceedings, 2014, pp. 541–547. doi:10.1109/IVS.2014.6856556.1356

[49] M. Hülsen, J. M. Zöllner, C. Weiss, Traffic intersection situation de-1357

scription ontology for advanced driver assistance, in: 2011 IEEE In-1358

telligent Vehicles Symposium (IV), 2011, pp. 993–999. doi:10.1109/1359

IVS.2011.5940415.1360

[50] M. Buechel, G. Hinz, F. Ruehl, H. Schroth, C. Gyoeri, A. Knoll,1361

Ontology-based traffic scene modeling, traffic regulations dependent1362

situational awareness and decision-making for automated vehicles, in:1363

2017 IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 1471–1476.1364

doi:10.1109/IVS.2017.7995917.1365

[51] I. Majzik, O. Semeráth, C. Hajdu, K. Marussy, Z. Szatmári, Z. Micskei,1366

A. Vörös, A. A. Babikian, D. Varró, Towards system-level testing with1367

coverage guarantees for autonomous vehicles, in: 2019 ACM/IEEE 22nd1368

International Conference on Model Driven Engineering Languages and1369

Systems (MODELS), IEEE, 2019, pp. 89–94.1370

[52] J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. A. Shamma, M. S. Bern-1371

stein, L. Fei-Fei, Image retrieval using scene graphs, in: 2015 IEEE Con-1372

ference on Computer Vision and Pattern Recognition (CVPR), 2015, pp.1373

3668–3678. doi:10.1109/CVPR.2015.7298990.1374

[53] X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, A. G. Hauptmann, A com-1375

prehensive survey of scene graphs: Generation and application, IEEE1376

Transactions on Pattern Analysis and Machine Intelligence (2021) 1–1377

1doi:10.1109/TPAMI.2021.3137605.1378

48

https://doi.org/10.1109/ISSREW.2018.00-20
https://doi.org/10.1109/ISSREW.2018.00-20
https://doi.org/10.1109/ISSREW.2018.00-20
https://doi.org/10.1109/ICSTW50294.2020.00020
https://doi.org/10.1109/ICSTW50294.2020.00020
https://doi.org/10.1109/ICSTW50294.2020.00020
https://doi.org/10.1109/IVS.2014.6856556
https://doi.org/10.1109/IVS.2011.5940415
https://doi.org/10.1109/IVS.2011.5940415
https://doi.org/10.1109/IVS.2011.5940415
https://doi.org/10.1109/IVS.2017.7995917
https://doi.org/10.1109/CVPR.2015.7298990
https://doi.org/10.1109/TPAMI.2021.3137605

[54] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, R. Girshick, Detectron2, https:1379

//github.com/facebookresearch/detectron2 (2019).1380

[55] J. Redmon, A. Farhadi, Yolov3: An incremental improvement, arXiv1381

(2018).1382

[56] A. V. Malawade, S.-Y. Yu, B. Hsu, H. Kaeley, A. Karra, M. A.1383

Al Faruque, roadscene2vec: A tool for extracting and embedding road1384

scene-graphs, Knowledge-Based Systems 242 (2022) 108245.1385

[57] J. Li, H. Gang, H. Ma, M. Tomizuka, C. Choi, Important object iden-1386

tification with semi-supervised learning for autonomous driving (2022)1387

2913–2919.1388

[58] A. Prakash, S. Debnath, J. Lafleche, E. Cameracci, G. State, S. Birch-1389

field, M. T. Law, Self-supervised real-to-sim scene generation, in: 20211390

IEEE/CVF International Conference on Computer Vision (ICCV),1391

IEEE Computer Society, Los Alamitos, CA, USA, 2021, pp. 16024–1392

16034. doi:10.1109/ICCV48922.2021.01574.1393

URL https://doi.ieeecomputersociety.org/10.1109/1394

ICCV48922.2021.015741395

[59] A. Silberschatz, H. Korth, S. Sudarshan, Database systems concepts,1396

McGraw-Hill, Inc., 2005.1397

[60] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, D. Vrgoč, Foun-1398

dations of modern query languages for graph databases, ACM Comput-1399

ing Surveys (CSUR) 50 (5) (2017) 1–40.1400

[61] D. Jackson, Alloy: a lightweight object modelling notation, ACM Trans-1401

actions on software engineering and methodology (TOSEM) 11 (2)1402

(2002) 256–290.1403

[62] T. Reinbacher, M. Függer, J. Brauer, Runtime verification of embedded1404

real-time systems, Formal methods in system design 44 (2014) 203–239.1405

[63] S. Pinisetty, P. S. Roop, S. Smyth, N. Allen, S. Tripakis, R. V. Hanxle-1406

den, Runtime enforcement of cyber-physical systems, ACM Transactions1407

on Embedded Computing Systems (TECS) 16 (5s) (2017) 1–25.1408

49

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.01574
https://doi.org/10.1109/ICCV48922.2021.01574
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.01574
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.01574
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.01574

[64] H. Jiang, S. Elbaum, C. Detweiler, Reducing failure rates of robotic1409

systems though inferred invariants monitoring, in: 2013 IEEE/RSJ In-1410

ternational Conference on Intelligent Robots and Systems, IEEE, 2013,1411

pp. 1899–1906.1412

[65] A. Pnueli, The temporal logic of programs, in: 18th Annual Symposium1413

on Foundations of Computer Science (sfcs 1977), ieee, 1977, pp. 46–57.1414

[66] S. Zhu, G. Pu, M. Y. Vardi, First-order vs. second-order encodings for1415

ltlf-to-automata.1416

[67] F. Fuggitti, Ltlf2dfa (March 2019). doi:10.5281/zenodo.3888410.1417

[68] M. O. Almasawa, L. A. Elrefaei, K. Moria, A survey on deep learning-1418

based person re-identification systems, IEEE Access 7 (2019) 175228–1419

175247.1420

[69] M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, S. C. Hoi, Deep learning for1421

person re-identification: A survey and outlook, IEEE transactions on1422

pattern analysis and machine intelligence 44 (6) (2021) 2872–2893.1423

[70] H. Wang, J. Hou, N. Chen, A survey of vehicle re-identification based1424

on deep learning, IEEE Access 7 (2019) 172443–172469.1425

[71] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, K. Schindler, Mot16: A bench-1426

mark for multi-object tracking, arXiv preprint arXiv:1603.00831 (2016).1427

[72] D. K. Dewangan, S. P. Sahu, Real time object tracking for intelligent1428

vehicle, in: 2020 first international conference on power, control and1429

computing technologies (ICPC2T), IEEE, 2020, pp. 134–138.1430

[73] S. Kothawade, S. Ghosh, S. Shekhar, Y. Xiang, R. Iyer, Talisman: tar-1431

geted active learning for object detection with rare classes and slices us-1432

ing submodular mutual information, in: European Conference on Com-1433

puter Vision, Springer, 2022, pp. 1–16.1434

[74] C. Team, I. A. A. Lab, E. A. Foundation, AlphaDrive, Autonomous1435

driving on carla leaderboard, accessed on 02.07.2024.1436

URL https://paperswithcode.com/sota/autonomous-driving-on-1437

carla-leaderboard1438

50

https://doi.org/10.5281/zenodo.3888410
https://paperswithcode.com/sota/autonomous-driving-on-carla-leaderboard
https://paperswithcode.com/sota/autonomous-driving-on-carla-leaderboard
https://paperswithcode.com/sota/autonomous-driving-on-carla-leaderboard
https://paperswithcode.com/sota/autonomous-driving-on-carla-leaderboard
https://paperswithcode.com/sota/autonomous-driving-on-carla-leaderboard
https://paperswithcode.com/sota/autonomous-driving-on-carla-leaderboard

[75] H. Shao, L. Wang, R. Chen, H. Li, Y. Liu, Safety-enhanced autonomous1439

driving using interpretable sensor fusion transformer, in: Conference on1440

Robot Learning, PMLR, 2023, pp. 726–737.1441

[76] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,1442

 L. Kaiser, I. Polosukhin, Attention is all you need, Advances in neural1443

information processing systems 30 (2017).1444

[77] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, Y. Qiao, Trajectory-guided con-1445

trol prediction for end-to-end autonomous driving: A simple yet strong1446

baseline, Advances in Neural Information Processing Systems 35 (2022)1447

6119–6132.1448

[78] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image1449

recognition, in: The IEEE Conference on Computer Vision and Pattern1450

Recognition (CVPR), 2016.1451

[79] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,1452

H. Schwenk, Y. Bengio, Learning phrase representations using rnn1453

encoder-decoder for statistical machine translation, arXiv preprint1454

arXiv:1406.1078 (2014).1455

[80] D. Chen, P. Krähenbühl, Learning from all vehicles, in: CVPR, 2022.1456

[81] T. Toledo, D. Zohar, Modeling duration of lane changes, Transportation1457

Research Record 1999 (1) (2007) 71–78.1458

[82] N. Jakobi, P. Husbands, I. Harvey, Noise and the reality gap: The use1459

of simulation in evolutionary robotics, in: European Conference on Ar-1460

tificial Life, Springer, 1995, pp. 704–720.1461

51

	Introduction
	Background and Related Work
	AV Safety Monitors
	Ontologies for the AV Domain
	Scene Graph Generation (SGG)
	Graph Properties
	Linear Temporal Logic

	SGSM Framework
	Offline
	Specification Definition
	Monitor Synthesis

	Online
	Representation creation
	Property evaluation

	Extending SGSM
	Motivation
	Counting and Duration
	Handling Re-initialization

	Recovery Criteria Encoding
	Reset Mapping Encoding

	Limitations of Expressiveness
	Temporal Properties over Symbolic Entities
	Monitoring over Discrete Time
	Variable Duration Properties
	Precision and Recall of Scene Graph Generators

	Study
	Setup
	Common Execution Platform
	AV Systems Evaluated

	RQ#1. SGSM Properties Evaluated
	RQ#2. Violations Observed
	RQ#3: SGSM++ Violation Counts and Durations
	Threats of validity
	Potential for Field Deployments of SGSM++

	Conclusion

