
A Differential Testing Framework to Identify
Critical AV Failures Leveraging Arbitrary Inputs

Trey Woodlief∗
University of Virginia
Charlottesville, USA
adw8dm@virginia.edu

Carl Hildebrandt∗
University of Virginia
Charlottesville, USA

hildebrandt.carl@virginia.edu

Sebastian Elbaum
University of Virginia
Charlottesville, USA
selbaum@virginia.edu

Abstract—The proliferation of autonomous vehicles (AVs) has
made their failures increasingly evident. Testing efforts aimed
at identifying the inputs leading to those failures are challenged
by the input’s long-tail distribution, whose area under the curve
is dominated by rare scenarios. We hypothesize that leveraging
emerging open-access datasets can accelerate the exploration of
long-tail inputs. Having access to diverse inputs, however, is not
sufficient to expose failures; an effective test also requires an
oracle to distinguish between correct and incorrect behaviors.
Current datasets lack such oracles and developing them is
notoriously difficult. In response, we propose DIFFTEST4AV, a
differential testing framework designed to address the unique
challenges of testing AV systems: 1) for any given input, many
outputs may be considered acceptable, 2) the long-tail contains
an insurmountable number of inputs to explore, and 3) the
AV’s continuous execution loop requires for failures to persist in
order to affect the system. DIFFTEST4AV integrates statistical
analysis to identify meaningful behavioral variations, judges
their importance in terms of the severity of these differences,
and incorporates sequential analysis to detect persistent errors
indicative of potential system-level failures. Our study on 5
versions of the commercially-available, road-deployed comma.ai
OpenPilot system, using 3 available image datasets, demonstrates
the capabilities of the framework to detect high-severity, high-
confidence, long-running test failures.

I. INTRODUCTION

There are many autonomous vehicles (AVs) on the roads
today, and their increased presence is making their failures
and the consequences of those failures more common [1]–[5].
A critical issue in testing AVs is their long-tail distribution of
inputs. This includes a multitude of rare and unusual scenarios,
which are not frequently encountered during operation but
can lead to unexpected behaviors and sometimes catastrophic
failures. The number and variety of these edge cases under-
score the importance of comprehensive and rigorous testing
methodologies for AVs to ensure their safety and reliability.

The volume of sensor data being collected by AVs is
increasing rapidly. For instance, the California Department of
Motor Vehicles reported that registered AVs logged 2 million
miles in 2020 [6], 4 million miles in 2021 [7], 5.7 million
miles in 2022 [8], and over 9 million miles in 2023 [9]. We
hypothesize that leveraging this massive, continuously growing
volume of sensor data, alongside open access to existing
diverse datasets, provides a unique opportunity to uncover

∗Equal Contribution

Fig. 1: DIFFTEST4AV identifies this input image as one
causing a high-impact failure: over 90% confident the SUT
response to that image is an outlier when compared with the
reference systems, and causes a 20° output difference. SUT
steering (red line) causes the vehicle to turn off-road.

and analyze the long-tail of sensor inputs—especially those
edge cases not previously encountered. Effectively mining
these datasets can reveal deficiencies in newer system versions,
which might otherwise go undetected.

Having more and diverse inputs, however, is necessary but
not sufficient to build a test that exposes failures. A test
consists not just of an input but also of an oracle that can
distinguish between correct and incorrect behavior given that
input in the system under test (SUT). Existing sensor input
datasets for AVs tend to lack an oracle, and developing oracles
for them is notoriously challenging [10]. At best, these datasets
provide pieces of an oracle, such as the output of a human
driver or the output of another system, but they often lack
sufficient context and provenance details. For instance, while
a human driver’s actions can offer some insights, they do
not provide comprehensive coverage of all possible correct
behaviors, nor do they account for the person’s state or driving
style. For example, a cautious driver and an aggressive driver
might both offer valid yet very different responses to the same
scenario, neither of which may be ideal for a test oracle.

To address the AV oracle challenge, we build on prior work
on differential testing, which has sought to address the problem
of lacking oracles for traditional software by using other sys-
tems to create pseudo-oracles. Given the SUT and a reference
system S aiming to satisfy the same specifications, differential

testing oracles check that ∥SUT (input)−S(input)∥ < δ for
a suitably small δ. In the case of AVs, the common practice of
frequent releases (e.g., OpenPilot’s software is contributed to
hourly [11] and Tesla’s self-driving software is updated every
few weeks [12]) offers a common path towards identifying
viable systems similar to SUT to perform differential testing.

However, there are key differences between AV systems and
traditional software systems that limit the direct application of
differential testing to AV systems. First, for any given input
scenario, a range of output behaviors might be acceptable
[10]. In other words, the acceptance threshold δ between
behaviors depends on the particular inputs. For some inputs,
small variations are expected. For example, in the presence
of congested standstill traffic, the acceleration and steering
should always be close to 0. Other inputs may have behavior
that varies slightly; for instance, some AVs might merge more
assertively, resulting in a quick, sharp steering angle, while
others may merge slowly, resulting in a long, extremely small
steering angle. There are also cases where large variations in
output across AVs may be acceptable. For example, to avoid a
collision, a vehicle may steer aggressively, brake, or both. To
address this variability, an AV differential framework must not
only identify when an output differs across systems but also
provide a reliability or confidence estimate that the difference
is not within the range of acceptable answers δ.

Second, given the input dataset sizes for AVs, there will
be an insurmountable number of tests revealing, with high
confidence, that there is a difference between the SUT and
S. An AV differential framework must be able to not only
identify these tests, but also provide an estimate of the severity
of failing tests. For example, being confident that we can
reliably produce a steering angle difference of 1° in a system
is probably much less severe than a test of equal confidence
that produces a steering angle difference of 20°. We refer to a
high-confidence, high-severity failure as high-impact. Figure 1
highlights a high-impact failure found by our approach where
the SUT attempts to turn right at a curve to the left. This
failure has a confidence of 99.3% and a severity of 22.2°.

Third, AV systems operate in continuous time, constantly
receiving new inputs and producing output commands to
actuate in the world in real time. Even if the AV’s output
is deemed incorrect at any specific instant, this constant loop
attenuates the ability for a single failure to propagate to a
system-level failure. For example, a steering angle output that
is 10° off for a few milliseconds during one prediction cycle
but then gets corrected in the next may lead to no perceptible
change since the system could not turn 10° in that time.
Meanwhile, a steady error of 10° over several seconds could
pull the AV into the opposing lane of traffic. Accordingly, an
AV differential framework must address this temporal aspect
in its test analysis, automatically identifying long-running
failures that are more likely indicative of potential system-level
failures. By extending the definition of differential testing,
this framework must not only detect differences at discrete
moments but also evaluate the persistence of these differences
over time to ensure comprehensive system reliability.

To address these requirements, we propose DIFFTEST4AV,
a differential testing approach for AVs and other autonomous
systems that accounts for their unique operational paradigm,
enabling developers to use arbitrary inputs to test AV systems.
DIFFTEST4AV identifies high-severity, high-confidence, long-
running failures that could lead to system-level failures. To
do so, it first uses statistical analysis to contrast the out-
puts between the SUT and reference systems to find high-
confidence differences. Second, it evaluates the severity of the
differences to prioritize critical issues. Third, it analyzes the
confidence and severity over time to detect persistent soft-
ware failures indicative of potential system-level failures. We
evaluated DIFFTEST4AV’s ability to uncover failures on the
commercially-available, road-deployed comma.ai OpenPilot
system from three real-world datasets. Our findings indicate
that DIFFTEST4AV can identify high-confidence, high-
severity, long-running failures for state-of-the-art systems
on arbitrary sensor data, identifying 143 inputs out of over
4.5 million (0.003%) that yield high-impact failures at over
90% confidence and 40° severity, including a 27-input (1.8
second) duration failure—a failure of this duration and severity
would result in potentially catastrophic failures for the AV.

II. BACKGROUND

A test oracle is a function that distinguishes between correct
and incorrect behaviors of an SUT [10], [13]. An oracle takes
an input and the system’s output, and maps them to a Boolean
value, oracle : (input ,SUT (input)) 7→ B. Automating the
oracle function is key to scaling up the testing process to the
size of modern AV datasets. For an oracle to automatically per-
form this operation, it typically compares the observed output
with a known expected output. The methods of deriving the
expected output and performing the comparison are implicit
oracles, specification-based oracles, and differential oracles.

Implicit test oracles typically rely on the premise that there
is common agreement among stakeholders that some post-
conditions are unacceptable. For example, automated fuzzing
tools [14]–[16] often assume that a program that ends with a
segmentation or an uncaught exception is incorrect. In the area
of AVs, much of the existing work examines clearly incorrect
behaviors, such as failing to arrive at the destination [17],
driving off the road [18], driving in an opposing lane [19], or
causing collisions [20]–[25]. Such implicit oracles are effective
at detecting the most extreme misbehaviors, tend to be easy
and inexpensive to check, but can only map very few inputs.

Specification-based oracles offer the opportunity to gener-
alize to more inputs and subtle categorization of behaviors
[13], [26]–[29]. In the realm of AVs, most efforts check
for postconditions on systems’ output state (e.g., maximum
velocity, minimum battery, waypoints within a reachability
range, or aligning with traffic rules) [10], [30]–[33] that apply
to all inputs. Developing more general specifications that
relate the system sensor inputs and system state to system
behavior is much more challenging, in part due to the size
and complexity of the input space and the range of acceptable

behaviors. To address this challenge, many metamorphic spec-
ifications have emerged to guide the oracle function in AVs.
Such specifications provide auxiliary functions describing how
changes in inputs relate to changes in outputs [34], [35]. In
the context of AVs, for example, there have been a myriad
of approaches to apply transformations to camera images that
mimic sensor noise, weather, or lighting changes that should
not change the AVs steering or acceleration by more than a
threshold [36]–[40], or changes to particular portions of the
image that should change the system behavior in specific ways
(e.g., adding a vehicle in front of ego should cause ego to
deaccelerate, changing a light to green should not decrease
the ego’s velocity) [23], [41], [42]. Attempts to increase the
power of metamorphic functions, however, are limited as
jointly changing streams of inputs from multiple sensors and
estimating the effect on the system output is approximating
the difficulty of developing the system itself.

Differential oracles utilize reference systems with the same
specification as the SUT to judge correctness [43]. Given
an input, if the reference system and the SUT generate
the same behavior, then they are deemed consistent. If the
reference system given was deemed correct to begin with,
then that inconsistency is a failure. Differential testing has
been applied to autonomous systems, from comparing aviation
software operations [44] to comparing AV behaviors with
human drivers [45]. DIFFTEST4AV is the first approach to
perform differential testing between AV systems, accounting
for their unique operation paradigm.

III. APPROACH

DIFFTEST4AV aims to identify test inputs among vast field
datasets that induce high-impact failures in an AV system. It
is a differential testing approach for AV and other autonomous
systems that accounts for their unique operation paradigm,
enabling developers to use arbitrary inputs to test AV sys-
tems, identifying high-severity, high-confidence, long-running
software failures that could lead to system-level failures.

A. Problem Definition

An autonomous vehicle, denoted as AV , navigates scenarios
using a combination of its sensor readings of the environment,
denoted as x, and its current internal system state, represented
by s. Sensor readings x include data from cameras, LiDAR,
radar, and other sensors that help perceive the environment.
Examples of the system state s include the vehicle’s velocity,
position, acceleration, and current steering angle. These inputs
are processed by the AV , which computes the appropriate
action a, denoted as a = AV (x, s). The chosen action a
alters the AV ’s state in the world and subsequently affects
the vehicle’s future sensor readings. Note that sensor values
and states are matched pairs, i.e. si is the system state during
which xi was observed; let ti = (xi, si) refer to these matched
inputs; for brevity we say a = AV (ti). Recall that a test is
comprised of an input and an oracle; here ti constitutes the
test input, and DIFFTEST4AV will derive an oracle that takes
in ti and AV (ti) and decides whether the AV passed or failed.

AVs operate continuously in the world, constantly observing
inputs and producing actions, creating a continuous feedback
loop of action and reaction. Over time, as the AV operates
within a scenario, it observes a sequence of sensor and state
pairs T⃗ = ⟨(x0, s0), . . . ⟩; let A⃗ = AV (T⃗) refer to the
corresponding sequence of AV outputs. We use array index
notation to refer to sequence elements, e.g., A⃗[j] = aj and
A⃗[j : k] = ⟨ai ∈ A | j ≤ i ≤ k⟩. We now generalize the notion
of oracle to consider sequences of inputs and outputs; in the
AV domain we are particularly interested in identifying long-
running software failures as they are more likely to lead to
system-level failures. Formally, given a test T⃗ , DIFFTEST4AV
aims to identify the set of failing subsequences F⃗ ∈ F :

F = {F⃗ | F⃗ = T⃗ [j : j +m] ⪯ T⃗ ∧ ¬oracle(F⃗ , AV (F⃗))}

We can generalize these definitions to multiple tests which is
important as the AVs operating globally today produce massive
amounts of arbitrary observed sensor and state data, denoted
as T = {T⃗0, . . . }. Testers can access portions of this data from
their own datasets, by combining datasets, or by using publicly
available external data collected by an other AV’s or sources
such as dashcams. Independent of the source, DIFFTEST4AV
provides the mechanism to identify failing subsequences from
arbitrary test inputs. For the rest of this section, we will
present the analysis for a single-test case, referring to a test T⃗ .
However, any analysis with multiple tests would simply repeat
the process for each separate test.

B. Differential Testing

We propose using differential testing, which leverages other
systems built for the same interface and specifications that
can serve as reference systems to identify failures in the
SUT, AV SUT . Given a set of n autonomous systems AV =
{AV 1, AV 2, . . . , AV n} that share the same interface and
specifications, the approach runs each vehicle on the input to
obtain their actions. DIFFTEST4AV then compares the actions
taken by the reference systems to that of the SUT and derives
a notion of confidence and severity of failure for the SUT.

Figure 2 illustrates the components of DIFFTEST4AV. In
the first stage, DIFFTEST4AV begins by identifying the inputs
in T⃗ that cause high-confidence failures, where the level of
confidence is decided by the user through the parameter conf .
In the second stage, these high-confidence failure inputs are
filtered to preserve only those that also yield high-severity
failures, where the threshold of severity is parameterized by
sev . We refer to high-confidence, high-severity failures as
high-impact failures. Finally, the high-impact failures are used
to identify long-running failures over a given duration. This
step is parameterized by both the threshold for long-running,
dur , and the confidence threshold. In the following sections
we elaborate each of these components and explore a range
of parameter choices for conf , sev , and dur .

C. Confidence: Statistical Methods for Failure Identification

Driving this component is the insight that the problem of
identifying when AV SUT fails with respect to the n other AVs

T⃗ = (X⃗, S⃗)

AV = {AV 1, . . . , AV n}

AV SUT

confidence

T⃗ [j]T⃗ [j]T⃗ [j]T⃗ [j]T⃗ [j]T⃗ [j]T⃗ [j]T⃗ [j]T⃗ [j] severity
T⃗ [j]T⃗ [j]T⃗ [j]T⃗ [j]T⃗ [j] duration T⃗ [j : j +m]T⃗ [j : j +m]T⃗ [j : j +m]

conf sev , b dur

C I F

DIFFTEST4AV

Fig. 2: DIFFTEST4AV pipeline for a single test case T⃗ .

can be seen as an instance of the outlier detection problem in
statistics [46]. Given a sample and a data distribution, outlier
detection aims to determine the likelihood that the sample did
not come from the distribution, i.e. what is the probability it is
an outlier. This component aims to answer a similar question.
Formally, given a test input ti ∈ T⃗ , a set of outputs A =
{AV (ti) | AV ∈ AV ∪AV SUT }, what is the probability that
AV SUT (ti) is an outlier in A?

A difficulty is that statistical approaches require a charac-
terization of the underlying data distribution to reason about
outlier probabilities. However, completely characterizing the
distribution of acceptable outputs in response to a certain input
is impracticable. In the absence of a known data distribution,
the sampled data points, e.g. A, can be used to estimate the
distribution and identify outliers. The appropriate choice of
statistical estimation method depends on several conditions
including the data being analyzed, assumptions about its
distribution, the power requirements, and the number of data
points being analyzed, e.g. the number of prior available
systems. For example, under the assumption of normally-
distributed data, Dixon’s Q Test [47], the one we later used in
our study, is suitable for a relatively low number of available
systems, e.g. 2-5 systems in addition to the AV SUT , while
Grubbs’ Test [48] is better suited when there are more systems.
Other outlier detection methods may be appropriate in other
situations [49]; our approach is configurable to utilize different
statistical approaches as appropriate. This produces a function
confidence(ti, AV

SUT ,AV) that outputs, from 0% to 100%,
the confidence that the output of AV SUT on ti is an outlier
based on the other systems AV (Section III-E later shows how
we extend this to sequences of inputs).

Using this confidence estimation function, DIFFTEST4AV
can now address the first threshold to find all inputs that yield
a potential failure over the confidence threshold conf . Let C
be the set of high-confidence failing inputs:

C = {T⃗ [j] | confidence(T⃗ [j], AV SUT ,AV) ≥ conf }

Example. In Section IV we explore a parameterization of
DIFFTEST4AV using Dixon’s Q Test [47] for the confidence
function. Under the assumption of normally distributed data1,
Dixon’s Q test uses the ratio between the gap, the distance

1Dixon’s Q test is robust to non-normal data for small sample sizes [50],
though further research is needed to define the boundaries of application.

between the most extreme data point and its next nearest
data point, and the range , the distance between the largest
and smallest data point, to derive a probability that the most
extreme data point is an outlier, i.e. the confidence2. This
is the namesake statistic, Q = gap/range. The Dixon’s Q
Test sidesteps the issue of needing to directly compute the
parameters of the underlying distribution through the use of
ratios, which makes it particularly well-suited to use-cases
where there are limited numbers of samples to support such
calculations. The confidence is based on both the test statistic,
Q, and the number of samples tested. For our approach, the
number of samples tested is equal to the number of reference
systems plus one, |AV| + 1, as the SUT is included in the
number of samples. The more reference systems there are,
the lower the Q value required for the same confidence. To
achieve 90% confidence for 3 samples requires Q ≥ 0.89, 4
requires Q ≥ 0.68, and 5 requires Q ≥ 0.56 [47]. Concretely,
if for a given input the 4 reference systems’ outputs lie
between 0 and 43, and the SUT output is 100, then this gives
range = 100− 0 = 100, gap = 100− 43 = 57, Q = 57/100 =
0.57 > 0.56, so we are more than 90% confident the SUT is
an outlier, i.e. this input causes AV SUT to fail.

Consider the example sequence of outputs for AV and
AV SUT shown in Table I and Figure 3. All examples are
taken from the open-source real-world OpenPilot 2k19 dataset
applied to 5 commercial AV systems explored and further
discussed in Section IV. The image is a dashcam input for a
steering control system. The outputs shown in Table I are the
steering angle that each system predicts the AV should actuate
based on the given input. The different columns correspond
to the consecutive input frames immediately before and after
the input shown in Figure 3. From the table, we see that the
outputs produced by the reference systems in frame 404 are
in relative agreement, predicting a steering angle from 2 to 8
degrees, i.e., steer slightly left. By contrast, the SUT outputs
a much stronger signal to turn left by 33 degrees. While the
image appears to show the AV on the right edge of the lane,
and thus a correction to the left may be warranted, the output
of the SUT may be closer to turning left than centering in the
lane. The Dixon’s Q test to compute the gap, range, Q, and
confidence, shown in the lower half of Table I. Here we find,

2Note that if the SUT is not the most extreme data point, judged by distance
from the sample mean, then we conservatively set the confidence to 0 as this
indicates we are more confident that a reference system is failing instead.

Fig. 3: > 98% confidence failure, frame 404 in Table I.

TABLE I: SUT Failures over Several Frames

Frame 402 403 404 405 406
Steering Angle (degrees)

AV 1 3.90 3.90 2.57 1.25 1.25
AV 2 7.29 6.36 5.25 4.06 4.06
AV 3 0.10 0.10 0.08 0.08 0.06
AV 4 11.40 7.67 7.67 8.93 8.93

AV SUT 31.23 33.37 33.37 33.37 20.35
Gap 19.83 25.70 25.70 24.44 11.42

Range 31.13 33.27 33.29 33.29 20.28
Q 0.637 0.773 0.772 0.734 0.563

Confidence 94.76% 98.87% 98.86% 98.12% 90.35%

with over 90% confidence in each frame, that the SUT failed.

D. Severity: Identifying SUT Misbehavior

In addition to identifying failures with high confidence, we
also aim to identify failures with high severity. More precisely,
given a single test input ti, severity(ti, AV SUT ,AV) rates
the severity of a failure of AV SUT based on the outputs of
the reference systems relative to the test input. The simplest
approach is to measure the difference between the outputs,
e.g. to use the difference in steering angle as the severity.
However, we can further enrich this by using the test input
to estimate how the output will affect the system’s behavior.
Let b be a function that takes as input the test input and
the system output, and produces an estimate of the system’s
future behavior. The behavior function can use the system
state, output action, and kinematics to, e.g., estimate the future
position of the SUT and the reference systems. Analyzing the
behavior will allow for, e.g., distinguishing that a steering error
of 5° is potentially catastrophic at highway speeds, but will
have no effect if the vehicle is parked. The severity function
then finds the minimum distance between the SUT’s behavior
and that of any of the reference systems:

severity(ti, AV SUT ,AV) =
min

AV ∈AV
∥b(ti, AV (ti))− b(ti, AV SUT (ti))∥

Using this function, DIFFTEST4AV can find all test inputs
that yield a potential failure over a given severity threshold
sev : Let I be the set of high-impact failing inputs:

I ={T⃗ [j] | T⃗ [j] ∈ C ∧ severity(T⃗ [j], AV SUT ,AV) ≥ sev}

Fig. 4: > 91% conf., 0.16° sev., frame 222 in Table II.

TABLE II: High Confidence Low Severity SUT Failure

Frame 220 221 222 223 224
Steering Angle (degrees)

S1 0.34 0.34 -0.07 -0.19 -0.30
S2 -0.12 -0.13 0.00 -0.40 -0.47
S3 -0.02 -0.02 -0.02 -0.02 -0.02
S4 0.12 0.12 -0.11 -0.11 -0.64

AV SUT -0.05 -0.05 -0.27 -0.27 -0.27
Gap — — 0.16 — —

Range — — 0.27 — —
Q — — 0.772 — —

Confidence 0% 0% 91.33% 0% 0%

Example - the need for severity. Figure 4 and Table II are
presented in the same format as the example shown previously.
Note that values of “—” represent cases where the SUT output
was within the range of the reference system outputs, so
it is not a candidate for a failure. In this case, as will be
further explored in Section IV, the behavior function b is
given by the identity function, e.g. the system behavior is
approximated through the steering angle output. In frame 222,
shown in the middle column and depicted in the image, the
SUT outputs a value of -0.27° which is more than double
the next closest value, while the rest of the outputs are closely
clustered. Using Dixon’s Q test results in a value of Q = 0.772
which corresponds to a confidence of 91.33%. However, the
severity, as indicated by the gap value in Table II, is only 0.16°.
Although this is large in relative terms as compared to the other
outputs, leading Dixon’s Q test to yield high confidence, this is
minuscule in terms of steering output, leading to a low severity.
As we can see from the full array of steering angles in Figure4,
the outputs are oscillating near 0 for all systems across all
frames. Thus, although true 0 may be the “optimal” output,
all systems are likely demonstrating acceptable behavior.

In contrast, a severity threshold of 20° would identify the
failure in Figure 3 while ignoring the high-confidence outlier
in Figure 4. This showcases the utility in using a severity
threshold when identifying failures.

Example - when severity is not enough. In contrast to the
previous example which showcased the problems that arise
from high-confidence but low-severity failures, let us now
examine a case of low confidence but high severity. Figure 5

Fig. 5: 57.6% confidence, 10.7° severity failure.

demonstrates an input that yields a high-severity (10.7°), but
low-confidence (57.6%) failure. The low confidence is due to
the large spread of outputs from the reference systems with
Q = gap/range = 10.7/36.4 = 0.29. This spread and low
confidence indicates that this should not be identified as a
failure of the SUT. However, we note that a different use case
for this approach could identify high-severity, low-confidence
failures as these likely point to a failure in one or more of
the reference systems as well due to the large proportion of
disagreement; we leave such investigation for future work.

E. Duration: Identifying Potential System-Level Failures

Although the prior two sections allow DIFFTEST4AV to
identify the severity and confidence of failures in the SUT
based on single-instant sensor inputs, we are particularly
interested in identifying test-input sequences that can lead
to prolonged failures as these may escalate to system level
failures. One simple method for doing so is to identify
consecutive failures by the SUT that meet the sev and conf
thresholds for a given duration dur. Let Fsimple be the set of
high-impact failures of at least duration dur :

Fsimple = {T⃗ [j : j +m] |0 ≤ j ≤ j +m < |T⃗ | ∧m ≥ dur∧
∀ti ∈ T⃗ [j : j +m], ti ∈ I}

However, this does not take into account the fact that the
confidence of an entire sequence yielding a continuous failure
is lower than the confidence that at least one of the individual
inputs yields a failure. To this end, we adjust the requirement
to be more strict by taking the product of the individual failure
confidences to find a confidence in the entire sequence yielding
a continuous failure. Let F be the set of high-impact failures
of at least duration dur and combined confidence conf :

F = {T⃗ [j : j +m] |T⃗ [j : j +m] ∈ Fsimple ∧∏
ti∈T⃗ [j : j+m]

confidence(ti, AV SUT ,AV) ≥ conf }

Note that using the product to estimate the confidence of a
continuous failure requires the assumption that the likelihood
of failure on successive sensor inputs of each AV system is
independent. Yet in practice this is likely not the case since

Fig. 6: Image with > 97% confidence failure, out of ODD

successive inputs are likely to be highly similar. However,
even if this assumption does not hold, the failure sequences
found by taking the product are a subset of the original failure
sequences found, e.g. F ⊆ Fsimple , all of which have higher
average confidence than the original, which may be useful
to the tester as this estimate is more conservative. Once the
failing sequences have been identified, they can be additionally
filtered for maximality or to identify only non-overlapping
sequences based on testing goals.

Example. Let us re-examine the data from the first example
shown in Figure 3 and Table I. If we use a confidence threshold
of 90%, each individual frame meets the criteria; under the
simple aggregation technique, all five frames would represent
a maximal failure in Fsimple . However, if we use the more
conservative technique, we find that only certain subsequences
are retained in F . For example, frames 402 to 405 have a
product of 94.76%× 98.87%× 98.86%× 98.12% = 90.88%
which meets the threshold of 90%. However, adding frame
406, would bring the overall confidence to 90.88%×90.35% =
82.11% which is below the threshold. This means that while
T⃗ [402 : 405] ∈ F , T⃗ [402 : 406] ̸∈ F .

Taken together, these three stages of DIFFTEST4AV can
identify, from arbitrary sequences of sensor inputs, the highest-
severity, highest-confidence, longest-duration failures exhib-
ited by the SUT.

F. Limitations and Extensions

We now briefly discuss the limitations of our approach and
potential extensions for future work to address these.

Statistical Assumptions. Reasoning about whether the out-
puts of the AV systems meet the assumptions of various
statistical tests is a difficult problem. Many tests of the
assumptions require large quantities of data and become more
difficult to process in the face of potential outliers. Particularly,
this problem setting requires reasoning about the distribution
of outputs for all of the tested systems conditioned by the
input. If the assumptions do not hold, then DIFFTEST4AV
may over or under estimate the outlier probability. However,
DIFFTEST4AV can still provide utility. Rather than using the
confidence as a threshold with defined semantics, it can be
used as a prioritization criteria. That is, instead of investigating

all tests where there is 90% confidence it is an outlier,
the developer should investigate tests with 99% confidence
before tests with 90% confidence since the relative strength of
99% > 90% holds even if the actual probability is incorrect.

Handling Multiple Outputs. As presented, DIFFTEST4AV
only identifies failures of systems that produce a single numer-
ical output, e.g. an AV system that produces a steering angle.
However, modern AV systems often produce many different
outputs of different kinds. We believe that natural extensions to
DIFFTEST4AV could allow for handling multiple outputs over
numerical types. For more complex output types, additional
refinement is required. For example, an AV system may output
a set of waypoints representing its future trajectory. The core
features of DIFFTEST4AV require only the ability to estimate
the confidence that an output is an outlier and measure the
outlier’s severity. Given the specific semantics of, e.g., a
trajectory output, specialized techniques [51], [52] would need
to be adapted to calculate these two values.

Out-of-Distribution Inputs. Our approach allows for ar-
bitrary input data to be used for differential testing. Some of
this data could reside outside the system’s expected operational
design domain (ODD) [53]. For example, Figure 6 shows an
identified failure at 97% confidence and almost 30° severity in
which the system is approaching an intersection. However, the
specifications for the system indicate that the system is not in-
tended to handle intersections [54]. As such, this identification
would be a false positive. However, recent work has presented
methods to automate the process of ODD detection, which
could be used to reduce the number of false positives [55].

Requiring Multiple Reference Systems. Our approach
assumes that sensor data is readily available and that it is a
superset of the data consumed by the autonomous systems. It
also assumes the availability of multiple autonomous systems
with identical specifications. These assumptions are gradually
becoming less restrictive as more vehicles, and more vehicle
versions, from various companies, capable of generating these
sensor datasets, begin to operate on our roads.

Strength of Pseudo-oracles. Finally, we recognize several
limitations of the differential oracle. When all AVs violate
the same specification, the differential oracle cannot detect
the failure. This limitation can be mitigated through the use
of more and varied reference systems. Setting the confidence,
severity, and duration thresholds too high may either overlook
differences indicative of a failure, whereas a threshold set too
low could lead to false positives. Last, if there are many correct
answers, the SUT may pick a correct answer, but one that
is unique from the reference systems. This will result in a
false-positive failure identification, but can similarly addressed
through more and varied reference systems.

IV. STUDY

We pose the following research questions:

RQ1: To what extent can DIFFTEST4AV identify high-
confidence failures over single inputs?
RQ2: To what extent can DIFFTEST4AV identify high-impact

TABLE III: Reference Systems and SUT Evaluated

System Label Date Commit ID
AV 1 Apr. 2022 5159878 [56]
AV 2 Jul. 2022 b51a90b [57]
AV 3 Nov. 2022 a48ec65 [58]
AV 4 Mar. 2023 cb2a53a [59]
AV SUT Jun. 2023 2ebd7ab [60]

TABLE IV: Datasets Utilized

Label # Videos Duration # Input Images
comma.ai 2016 11 7 hrs 391,843
comma.ai 2k19 2035 34 hrs 1,825,111
External JUtah 50 43 hrs 2,362,708

failures over single inputs?
RQ3: To what extent can DIFFTEST4AV identify high-
impact, long-running failures?

A. Setup

Conducting the study required a target SUT and reference
systems, and input datasets. We describe our choices next.
Systems. We selected comma.ai’s OpenPilot as our target
AV. This commercial, open-source, road-deployed system is
capable of performing various tasks including Automatic
Lane Centering (ALC), Adaptive Cruise Control (ACC), Lane
Departure Warning (LDW), and Forward Collision Warning
(FCW). While OpenPilot is more accurately characterized as
an Automated Driving System (ADS) than an AV, the ALC
capability is a crucial component of any AV system. OpenPilot
is compatible with over 250 vehicle models [61] and has
reportedly driven over 50 million miles in deployment [62],
demonstrating the maturity of this safety-critical system. We
analyzed five versions of OpenPilot’s open-source ALC [56]–
[60], listed in Table III; the latest version served as the SUT
while the four prior versions were the reference systems. These
versions are spaced roughly three months apart, allowing suf-
ficient time for differences to develop between each iteration.
All versions have consistent specifications and rely on camera-
based inputs to determine their behavior.
Datasets. We used three datasets of images collected from
real-world driving to evaluate DIFFTEST4AV’s ability to use
arbitrary data to generate tests. The first two datasets are
from comma.ai to illustrate the presence of viable inputs
within datasets used by the same company that produced
the AV that can be transformed into test cases. The chosen
datasets are the comma.ai 2016 dataset [63], consisting of 11
videos totaling 7 hours, and the comma.ai 2k19 dataset [64],
with 2035 videos totaling 34 hours. These selections were
based on the premise that data from the same source as the
SUT would likely adhere to the system’s specifications and
exhibit minimal, yet potentially some, failures. To assess our
approach’s ability to utilize arbitrary data from other sources
of real-world sensor data, we examined the most recent 50
videos, totaling 43 hours, from the JUtah dashcam video
collection [65], unaffiliated with comma.ai (labeled “External
JUtah” in the results to make clear this lack of affiliation). This

020406080100
Confidence (%)

0

2

4

6

8

0.466
0.656
1.204Pe

rc
en

ta
ge

 o
f D

at
as

et
 >

X
Co

nf
id

en
ce

comma.ai 2016
comma.ai 2k19
External JUtah
90% Confidence

Fig. 7: Percentage of dataset above a given confidence (note
reversed X-axis)

collection, which includes thousands of dashcam recordings,
showcases a wide range of publicly accessible sensor data.
Due to its lack of affiliation with comma.ai, we anticipated a
higher incidence of failures in this dataset. The three datasets
are summarized in Table IV. Since the three datasets lack
velocity state information, which OpenPilot uses to compute
its output, we pair each image with a set velocity of 30 mph,
a reasonable average for the variety of scenarios shown in the
datasets. Exploring alternative approaches to setting the state
and how the state affects our approach is left for future work.

B. RQ1: To what extent can DIFFTEST4AV identify high-
confidence failures?

Given a dataset of inputs, a set of reference systems, and
the SUT, the first step of DIFFTEST4AV aims to identify
high-confidence failures by assigning a score to each test
that defines the confidence that the SUT’s output represents
a failure for that input. Through this question we investigate
the distribution of confidences identified by DIFFTEST4AV
for the datasets. If the SUT was always the best system,
the distribution would contain only 0% confidence inputs
(ideal for the SUT). If the SUT always disagreed with the
reference systems and they all fully agreed with each other, the
distribution would contain only 100% confidence inputs (ideal
for DIFFTEST4AV’s ability to find failures). However, in
practice we expect that, for a robust system, most of the inputs
will be at 0% confidence, with a relatively small number of
inputs from the “long-tail” leading to high-confidence failures.

Figure 7 shows the cumulative distribution of the confidence
of failure achieved for the corresponding percentage of each
dataset. Note that the X-axis is reversed so that the graph
is presented as monotonically increasing; as the confidence
threshold decreases, more of the dataset is included above that
threshold. For each of the three datasets, less than 10% of the
dataset has > 0% confidence. Recall from Section III, if the
SUT is not the most extreme output, then its confidence is
defined to be 0. This indicates that less than 10% of the data

meets the the necessary condition of finding a failure in the
SUT. Also, comma.ai 2016 has the lowest percentage of non-
zero-confidence inputs at just under 4%, followed by comma.ai
2k19, and finally External JUtah. This is expected as comma.ai
2016 is the oldest internal dataset, so it may have already
been used for refinement of the OpenPilot system; similarly
for the 2k19 dataset, except it is both larger and newer, perhaps
explaining its higher percentage. Finally, we see that External
JUtah has the largest percentage of the dataset at all levels of
confidence. This was expected as it is external to comma.ai
and was not used for development.

These trends also hold at high confidence values. At 90%
confidence, marked with the dashed line in Figure 7, we see
that External JUtah has almost double the proportion of the
next closest in comma.ai 2k19, with 1.20% of the External JU-
tah dataset leading to > 90% confidence failures compared to
only 0.66% for comma.ai 2k19. At 90%, DIFFTEST4AV can
identify the 42,235 high-confidence failures among 4,579,662
inputs across these datasets (0.92%), and at 99% it identifies
the 3,284 (0.07%) high-confidence failures.

C. RQ2: To what extent can DIFFTEST4AV identify high-
confidence and high-severity failures over single inputs?

Now that DIFFTEST4AV has found high-confidence failures
in the SUT, we can further leverage it to identify inputs
that lead to high-confidence, high-severity, i.e. high-impact,
failures. In this RQ we focus on the ability to identify single-
instant failures; the next RQ will analyze multi-frame failures.

Figure 8 provides a 2D histogram of the number of inputs
that lead to a failure at various thresholds of severity and
confidence across the three datasets (note that 0% confidence
inputs are not shown since those are dropped by the confi-
dence module). To further examine the distribution of high-
confidence and high-severity failures, we set a red vertical line
marking 90% confidence and green horizontal lines marking
10° to 50° severities. These are further explored in Table V,
which describes, for the different thresholds, the number of
high-confidence inputs (right of the red line), the number of
high-severity inputs (above the green line), and the number of
inputs that are both (upper right), and thus high-impact. The
table shows the number of single-frame inputs (# F) and the
number of videos (# V) from which those frames originated.

While RQ1 demonstrated that the confidence values spanned
the full-range, here we observe that the overwhelming majority
of non-zero confidence inputs lead to low-severity failures.
Figure 8a shows that most high-severity failures for the
comma.ai 2016 dataset reside in the 10%-50% confidence
range. Table V further highlights that there are no high-impact
failures above 30°, and only 2 above 20°. These 2 inputs
represent 0.005% of the dataset. We hypothesize that this low
failure rate is due to comma.ai 2016 being an older, internal
dataset that the developers of the SUT use.

Figure 8b and Table V show that the comma.ai 2k19
provides many more chances to identify high-confidence and
high-severity failures than the other datasets. This is unex-
pected, and we hypothesize that this may arise from the

0 20 40 60 80 100
Confidence (%)

0

10

20

30

40

50

60

70

80

90

Se
ve

rit
y

(d
eg

re
es

)

90% Confident
Severity

20

40

60

80

100

(a) comma.ai 2016 Failure Histogram

0 20 40 60 80 100
Confidence (%)

0

10

20

30

40

50

60

70

80

90

Se
ve

rit
y

(d
eg

re
es

)

90% Confident
Severity

200

400

600

800

1000

(b) comma.ai 2k19 Failure Histogram

0 20 40 60 80 100
Confidence (%)

0

10

20

30

40

50

60

70

80

90

Se
ve

rit
y

(d
eg

re
es

)

90% Confident
Severity

200

400

600

800

1000

1200

1400

1600

(c) External JUtah Failure Histogram

Fig. 8: Severity vs Confidence histograms across the three datasets. Best viewed on a screen.

TABLE V: Number of frames (# F) and videos (# V) leading to failures at 90% confidence and varying severity thresholds

comma.ai 2016 comma.ai 2k19 External JUtah
> conf > sev Both > conf > sev Both > conf > sev Both

sev # F # V # F # V # F # V # F # V # F # V # F # V # F # V # F # V # F # V
10°

1826 11

183 10 16 3

11967 1007

977 45 485 30

28442 45

1231 35 530 22
20° 67 8 2 1 494 19 263 12 124 13 49 4
30° 18 6 0 0 310 11 174 6 33 7 23 2
40° 5 3 0 0 183 8 140 6 3 1 3 1
50° 1 1 0 0 82 6 81 5 0 0 0 0

diversity of the dataset. As shown in Table IV, the comma.ai
2k19 dataset contains over 2000 separate videos; this may
indicate that the dataset better covers the long-tail distribution
of possible inputs and thus is better able to exhibit failures.
As shown in Table V, the comma.ai 2k19 dataset is the only
dataset to observe high-impact failures above 90% confidence
and 50° severity, with 81 failure-inducing frames (0.05%)
identifies across 5 videos (0.25%). If high-impact failures were
found at a rate of 0.25% of videos for the other datasets, then
we would expect to find one failure per 400 videos. With
comma.ai 2016 and External JUtah having 11 and 50 videos
respectively, their diversity may not be sufficient to uncover
these high-impact failures.

Although External JUtah does not find high-impact failures
at the 50° severity threshold, Figure 8c and Table V show that
External JUtah does contain inputs that lead to failures at 40°,
and also has a comparable number of failures to comma.ai
2k19 at the 10° severity threshold. Although External JUtah
is slightly larger than comma.ai 2k19, it has fewer but longer
videos. These results suggest that in the future, testing datasets
sourced from arbitrary data should focus on variety to increase
the chances of finding failures of the highest severity.

DIFFTEST4AV can identify the 143 (0.003%) of inputs
that yield high-impact failures at over 90% confidence and
40° severity, and the 54 (0.001%) of inputs that yield high-
impact failures at over 99% confidence and 50° severity,
highlighting its ability to automatically identify these rare, but
critical high-impact failures.

D. RQ3: To what extent can DIFFTEST4AV identify long-
running high-impact failures?

While RQ2 identified high-confidence and high-severity
failures based on a single input, in the AV domain we are
concerned with sequences of inputs that all indicate a failure
as those are more likely to lead to system level failures.

Figure 9 illustrates an example multi-frame failure from
the External JUtah dataset. The full 5 frames shown have
a minimum severity of 19.8° and a combined confidence of
77.7%. This scene depicts the AV driving toward a curve to
the left. Each of the reference systems produce an AV action
of straight or slightly left, with the systems indicating harder
left turns as the sequence progresses. However, throughout
the sequence, the SUT consistently produces an action of
turning significantly to the right. If the system were to actuate
this behavior, it could pull the AV off the road and prevent
it from making the turn, leading to a system-level failure.
This highlights the safety-critical nature of these systems and
demonstrates DIFFTEST4AV’s ability to find long-running,
high-impact failures that could lead to system-level failures.

For each dataset, with the SUT operating at 15Hz , Table VI
shows the maximal duration failure over given severity and
confidence thresholds using the more conservative estima-
tion approach described in Section III-E. For example, the
comma.ai 2k19 dataset, at 50° severity and 90% confidence,
had a maximal duration of 27 inputs (27/15Hz = 1.8
seconds). This 90% confidence means that the product of the
confidences of all 27 separate failures is over 90% and the
50° severity means that all 27 inputs led to failures of at least
50°. At 35mph a vehicle would travel over 90 feet, and a
continuous severity over 50° for 27 frames would drastically

(a) Frame 3465
C = 99.3%, S = 22.2°

(b) Frame 3466
C = 98.4%, S = 19.8°

(c) Frame 3467
C = 96.9%, S = 20.8°

(d) Frame 3468
C = 93.4%, S = 20.8°

(e) Frame 3469
C = 87.5%, S = 18.1°

Fig. 9: Mutli-frame failure found. The sequence has a combined confidence of 77.7% and minimum severity of 19.8°.

TABLE VI: Duration (in frames) of maximal failure per dataset at varying confidence and severity thresholds

comma.ai 2016 comma.ai 2k19 External JUtah
conf conf conf

sev 50% 75% 90% 95% 99% 50% 75% 90% 95% 99% 50% 75% 90% 95% 99%
10◦ 12 10 9 7 4 72 58 34 22 14 27 17 12 9 4
20◦ 4 3 2 1 0 64 56 34 22 14 23 17 10 7 3
30◦ 1 0 0 0 0 52 48 34 20 14 15 11 8 6 3
40◦ 1 0 0 0 0 42 42 27 19 11 3 3 3 2 0
50◦ 0 0 0 0 0 33 33 27 19 5 0 0 0 0 0

alter the vehicle’s trajectory in that time.
Table VI overall trends are as expected, as the confidence

and severity each increase (more stringent failure require-
ments), the maximal duration failure sequence identified by
DIFFTEST4AV decreases. More interesting, Table VI shows
that DIFFTEST4AV was able to identify, for each of the
datasets, a continuous failure of more than 10 frames at
50% confidence and 10° severity with a peak of a 72-input
continuous failure sequence in comma.ai 2k19 dataset for a
duration of 4.8 seconds. At 99% confidence and 10° sever-
ity, DIFFTEST4AV was still able to identify failures for all
datasets that lasted for at least 4 frames. We continue to
observe the same trend as with RQ2, with comma.ai 2k19
and External JUtah having substantially more failure-inducing
sequences than comma.ai 2016. Further, continuing the trend
from RQ2 that we hypothesize is related to dataset diversity,
comma.ai 2k19 has longer high-confidence and high-severity
failures at all levels.

E. Threats to Validity

The external validity of our study findings is affected by
our choice of AVs to serve as reference systems and SUT.
We chose the comma.ai OpenPilot system for study as it is
commercially available and actively in-use on public roads.
Further, as an open-source system, multiple prior versions
were publicly available for study to serve as reference systems.
Other AVs may present different failure modes, and the
quantity and type of failures identified will vary based on the
reference systems utilized. However, we believe that the setup
of this study as a regression test, in which previous versions of
a system are utilized as reference versions for the most recent
version as the SUT, represents a prototypical use case for the
framework. Our study’s external validity is further affected by
the datasets choices. We chose three datasets to represent two
typical use cases: two internal datasets used for developing and
testing the system, and an external dataset to demonstrate our

framework’s ability to use arbitrary data for testing. However,
the long-tail distribution of data means that these datasets may
not be representative; future work should conduct further study
on additional data.

The internal validity of our study is affected by the complex
experimental setup involved in executing the reference systems
and SUTs on the test input to evaluate their output. While
we extended the open-source code for evaluating the systems
provided by comma.ai, there are several complex components
including input normalization to resize the input images and
match input frame rates. To mitigate this threat, we release
an open-source artifact to execute the SUTs and analyze their
results3. The internal validity of our study is further affected by
our execution of the SUT in an open-loop manner. Although
offline open-loop testing is commonly utilized [66] due to its
safety benefits, it fundamentally limits our ability to reason
about whether continuous failures in an open-loop context
would translate to real-world failures in a closed-loop context.
To mitigate this threat, DIFFTEST4AV is conservative in its
estimation and can be further tuned to identify only the most
high-confidence, high-severity failures.

V. CONCLUSION

In this work we address the unique challenges of testing AVs
while tapping on increasingly vast sensor datasets. We propose
a differential testing approach, DIFFTEST4AV, which is able
to leverage reference systems to identify high-confidence,
high-severity, long-running failures in an SUT that can lead
to system-level failures—a critical need given the increasing
complexity of AV systems and their deployment contexts. Our
evaluation using multiple versions of comma.ai’s OpenPilot
showed DIFFTEST4AV’s capability to detect significant fail-
ures utilizing inputs from internal and external arbitrary sensor
datasets. Overall, DIFFTEST4AV processed over 4,579,662
inputs to identify 81 (0.002%) high-impact failures judged at

3https://github.com/icseanon/icse2025

90% confidence and 50° severity, showcasing its ability to find
the AV failure needle in the arbitrary data haystack. Notably
in terms of duration, when combined with the comma.ai 2k19
dataset, DIFFTEST4AV identified with 90% confidence, 27
consecutive input images that caused failures of 50° severity.
This would result in significant changes in behavior and could
be result in potentially fatal failures for an AV. These find-
ings indicate that DIFFTEST4AV successfully identified high-
confidence and high-severity failures, highlighting its potential
to enhance AV testing and safety. Moving forward, we will
extend this work by incorporating additional AV systems and
datasets, further refining our confidence and severity metrics,
and exploring the application of DIFFTEST4AV in closed-loop
testing environments to better simulate real-world conditions.

REFERENCES

[1] P. McCausland, “Self-driving uber car that hit and killed woman did not
recognize that pedestrians jaywalk,” 2019, [Online; accessed 09-July-
2023]. [Online]. Available: https://www.nbcnews.com/tech/tech-news/
self-driving-uber-car-hit-killed-woman-did-not-recognize-n1079281

[2] Jackie Wattles, “CNN Business - Tesla on Autopilot crashed when the
driver’s hands were not detected on the wheel,” https://www.cnn.com/
2019/05/16/cars/tesla-autopilot-crash/index.html, 2019, [Online; ac-
cessed 09-July-2023].

[3] T. Krisher, “Us report: Nearly 400 crashes of automated
tech vehicles,” 2022, [Online; accessed 22-July-2023]. [On-
line]. Available: https://apnews.com/article/self-driving-car-crash-data-
ae87cadec79966a9ba56e99b4110b8d6

[4] B. Pietsch, “2 killed in driverless tesla car crash, officials say,”
2021, [Online; accessed 09-July-2023]. [Online]. Available: https:
//www.nytimes.com/2021/04/18/business/tesla-fatal-crash-texas.html

[5] IEEE Connected Vehicles, “Google reports self-driving car disen-
gagements,” https://site.ieee.org/connected-vehicles/2015/12/15/google-
reports-self-driving-car-disengagements/, 2015, [Online; accessed 09-
July-2023].

[6] O. of Public Affairs, “Av permit holders report close to 2 million test
miles in california,” https://www.dmv.ca.gov/portal/news-and-media/
av-permit-holders-report-close-to-2-million-test-miles-in-california/,
2021.

[7] ——, “Av permit holders report 4 million test miles in california,”
https://www.dmv.ca.gov/portal/news-and-media/av-permit-holders-
report-4-million-test-miles-in-california/, 2022.

[8] ——, “Autonomous vehicle permit holders report 5.7 million test
miles in california,” https://www.dmv.ca.gov/portal/news-and-media/
autonomous-vehicle-permit-holders-report-5-7-million-test-miles-in-
california/, 2023.

[9] ——, “Autonomous vehicle permit holders report a record 9 million
test miles in california in 12 months,” https://www.dmv.ca.gov/portal/
news-and-media/news-releases/autonomous-vehicle-permit-holders-
report-a-record-9-million-test-miles-in-california-in-12-months/, 2024.

[10] G. Jahangirova, A. Stocco, and P. Tonella, “Quality metrics and oracles
for autonomous vehicles testing,” in 2021 14th IEEE conference on
software testing, verification and validation (ICST). IEEE, 2021, pp.
194–204.

[11] comma.ai, “Github - openpilot,” https://github.com/commaai/openpilot,
2024.

[12] Teslascope, “Full self-driving,” https://teslascope.com/software/full-self-
driving, 2024.

[13] L. Baresi and M. Young, “Test oracles,” 2001.
[14] M. Zalewski, American Fuzzy Lop, 2013 (accessed October 27, 2020),

https://lcamtuf.coredump.cx/afl/.
[15] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: whitebox fuzzing for

security testing,” Queue, vol. 10, no. 1, pp. 20–27, 2012.
[16] G. Grieco, M. Ceresa, and P. Buiras, “Quickfuzz: An automatic random

fuzzer for common file formats,” ACM SIGPLAN Notices, vol. 51,
no. 12, pp. 13–20, 2016.

[17] D. Coelho and M. Oliveira, “A review of end-to-end autonomous driving
in urban environments,” IEEE Access, vol. 10, pp. 75 296–75 311, 2022.

[18] Z. Zhong, G. Kaiser, and B. Ray, “Neural network guided evolutionary
fuzzing for finding traffic violations of autonomous vehicles,” IEEE
Transactions on Software Engineering, 2022.

[19] L. Klampfl, F. Klück, and F. Wotawa, “Using genetic algorithms for au-
tomating automated lane-keeping system testing,” Journal of Software:
Evolution and Process, vol. 36, no. 3, p. e2520, 2024.

[20] C. Stark, C. Medrano-Berumen, and M. İ. Akbaş, “Generation of
autonomous vehicle validation scenarios using crash data,” in 2020
SoutheastCon. IEEE, 2020, pp. 1–6.

[21] D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by crashing,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017, pp. 3948–3955.

[22] G. Li, Y. Li, S. Jha, T. Tsai, M. Sullivan, S. K. S. Hari, Z. Kalbarczyk,
and R. Iyer, “Av-fuzzer: Finding safety violations in autonomous driving
systems,” in 2020 IEEE 31st international symposium on software
reliability engineering (ISSRE). IEEE, 2020, pp. 25–36.

[23] M. von Stein, D. Shriver, and S. Elbaum, “Deepmaneuver: Adversarial
test generation for trajectory manipulation of autonomous vehicles,”
IEEE Transactions on Software Engineering, 2023.

[24] S. Bak, J. Betz, A. Chawla, H. Zheng, and R. Mangharam, “Stress
testing autonomous racing overtake maneuvers with rrt,” in 2022 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2022, pp. 806–812.

[25] L. Feng, Q. Li, Z. Peng, S. Tan, and B. Zhou, “Trafficgen: Learning to
generate diverse and realistic traffic scenarios,” in 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2023,
pp. 3567–3575.

[26] D. J. Richardson, S. L. Aha, and T. O. O’malley, “Specification-
based test oracles for reactive systems,” in Proceedings of the 14th
international conference on Software engineering, 1992, pp. 105–118.

[27] P. Stocks and D. Carrington, “A framework for specification-based
testing,” IEEE Transactions on software Engineering, vol. 22, no. 11,
pp. 777–793, 1996.

[28] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,
J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause et al., “Using
formal specifications to support testing,” ACM Computing Surveys
(CSUR), vol. 41, no. 2, pp. 1–76, 2009.

[29] V. S. Alagar, K. Periyasamy, and K. Periyasamy, Specification of
software systems. Springer, 2011.

[30] S. Konur, C. Dixon, and M. Fisher, “Formal verification of proba-
bilistic swarm behaviours,” in Swarm Intelligence: 7th International
Conference, ANTS 2010, Brussels, Belgium, September 8-10, 2010.
Proceedings 7. Springer, 2010, pp. 440–447.

[31] H. Liang, J. S. Dong, J. Sun, and W. E. Wong, “Software monitoring
through formal specification animation,” Innovations in Systems and
Software Engineering, vol. 5, pp. 231–241, 2009.

[32] H. Bhuiyan, G. Governatori, A. Bond, and A. Rakotonirainy, “Traffic
rules compliance checking of automated vehicle maneuvers,” Artificial
Intelligence and Law, vol. 32, no. 1, pp. 1–56, 2024.

[33] Y. Sun, C. M. Poskitt, X. Zhang, and J. Sun, “Redriver: Runtime
enforcement for autonomous vehicles,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, 2024, pp. 1–12.

[34] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. Tse, and Z. Q.
Zhou, “Metamorphic testing: A review of challenges and opportunities,”
ACM Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–27, 2018.

[35] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey
on metamorphic testing,” IEEE Transactions on software engineering,
vol. 42, no. 9, pp. 805–824, 2016.

[36] Z. Q. Zhou and L. Sun, “Metamorphic testing of driverless cars,”
Communications of the ACM, vol. 62, no. 3, pp. 61–67, 2019.

[37] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, 2018, pp.
132–142.

[38] X. Gao, R. K. Saha, M. R. Prasad, and A. Roychoudhury, “Fuzz testing
based data augmentation to improve robustness of deep neural net-
works,” in 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). IEEE, 2020, pp. 1147–1158.

[39] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th international conference on software engineering, 2018, pp. 303–
314.

[40] C. Sakaridis, D. Dai, and L. Van Gool, “Semantic foggy scene under-
standing with synthetic data,” International Journal of Computer Vision,
vol. 126, no. 9, pp. 973–992, 2018.

[41] T. Woodlief, S. Elbaum, and K. Sullivan, “Semantic image fuzzing
of ai perception systems,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 1958–1969.

[42] G. Christian, T. Woodlief, and S. Elbaum, “Generating realistic and
diverse tests for lidar-based perception systems,” in 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE,
2023, pp. 2604–2616.

[43] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[44] A. Groce, G. Holzmann, and R. Joshi, “Randomized differential testing
as a prelude to formal verification,” in 29th International Conference on
Software Engineering (ICSE’07). IEEE, 2007, pp. 621–631.

[45] D. M. Schwarz, L. Rolland, and J. B. Johnston, “Identifying real-world
problems with automated vehicles by detecting behavioral differences in
steering movements between the human driver and machine,” in 2022
IEEE 28th International Conference on Engineering, Technology and
Innovation (ICE/ITMC) & 31st International Association For Manage-
ment of Technology (IAMOT) Joint Conference. IEEE, 2022, pp. 1–9.

[46] H. Wang, M. J. Bah, and M. Hammad, “Progress in outlier detection
techniques: A survey,” Ieee Access, vol. 7, pp. 107 964–108 000, 2019.

[47] W. J. Dixon, “Ratios involving extreme values,” The Annals of Mathe-
matical Statistics, vol. 22, no. 1, pp. 68–78, 1951.

[48] F. E. Grubbs, “Procedures for detecting outlying observations in sam-
ples,” Technometrics, vol. 11, no. 1, pp. 1–21, 1969.

[49] E. Barini, “Features and performance of some outlier detection meth-
ods,” Journal of Applied Statistics, vol. 38, no. 10, pp. 2133–2149, 2011.

[50] M. Chernick, “Note on the robustness of dixon’s ratio test in small
samples.[testing for outliers],” Oak Ridge National Lab., TN (USA),
Tech. Rep., 1980.

[51] T. Laurent, S. Klikovits, P. Arcaini, F. Ishikawa, and A. Ventresque,
“Parameter coverage for testing of autonomous driving systems under
uncertainty,” ACM Transactions on Software Engineering and Method-
ology, vol. 32, no. 3, pp. 1–31, 2023.

[52] M. L. Dias, C. L. C. Mattos, T. L. da Silva, J. A. F. de Macedo, and W. C.
Silva, “Anomaly detection in trajectory data with normalizing flows,” in
2020 international joint conference on neural networks (IJCNN). IEEE,
2020, pp. 1–8.

[53] “Taxonomy and definitions for terms related to driving automation
systems for on-road motor vehicles,” April 2021. [Online]. Available:
http://dx.doi.org/10.4271/J3016 202104

[54] commaai, “openpilot,” https://github.com/commaai/openpilot/blob/
b816b5b/docs/LIMITATIONS.md, 2023.

[55] C. Hildebrandt, T. Woodlief, and S. Elbaum, “ODD-diLLMma: Driving
Automation System ODD Compliance Checking using LLMs,” in 2024
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2024.

[56] comma.ai, “openpilot 5159878,” 2022. [Online].
Available: https://github.com/commaai/openpilot/commit/
515987838908c1a4f5c822919ccf2d78ebac144b

[57] ——, “openpilot b51a90b,” 2022. [Online].
Available: https://github.com/commaai/openpilot/commit/
b51a90b5a87e0b6388191f7cc5857af8d72e79de

[58] ——, “openpilot a48ec65,” 2022. [Online].
Available: https://github.com/commaai/openpilot/commit/
a48ec655ac4983145bc93c712ecabac75b886e11

[59] ——, “openpilot cb2a53a,” 2023. [Online].
Available: https://github.com/commaai/openpilot/commit/
cb2a53ae80ab3917986266290f37ef0228a6ca21

[60] ——, “openpilot 2ebd7ab,” 2023. [Online].
Available: https://github.com/commaai/openpilot/commit/
2ebd7ab088ade61bbf661c140483fc477d444bc2

[61] commaai, “Openpilot supports 250+ vehicles,” https://comma.ai/
vehicles, 2023.

[62] ——, “Media,” https://www.comma.ai/media, 2023.
[63] E. Santana and G. Hotz, “Learning a driving simulator,” arXiv preprint

arXiv:1608.01230, 2016.
[64] H. Schafer, E. Santana, A. Haden, and R. Biasini, “A commute in data:

The comma2k19 dataset,” arXiv preprint arXiv:1812.05752, 2018.
[65] JUtah, “Driving around the world, 30+ countries,” https:

//www.youtube.com/@jutah, December 2023.
[66] H. Araujo, M. R. Mousavi, and M. Varshosaz, “Testing, validation, and

verification of robotic and autonomous systems: a systematic review,”
ACM Transactions on Software Engineering and Methodology, vol. 32,
no. 2, pp. 1–61, 2023.

