Specifications & Safety

CSCI 420-04 Robotics

Software Lifecycle

» What do we specify? pecification
« How do we know it is correct?

mplementation

Deploymen

140

Software Lifecycle

* What do we specify?
« How do we know it is correct?

 How do we know it is safe?
— Acceptable Risk
— Within time/cost/capability
— Treating system as a whole

peplioymer

(L

https://sma.nasa.gov/sma-disciplines/system-safety

How the customer How the project leader How the engineer How the programmer How the sales
explained it understood it designed it wrote it executive described it

i

How the project was What operations How the customer How the helpdesk What the customer
documented installed was billed supported it really needed

* Requirement
— Broad description of goal — User stories
— Not directly testable

» Specification
— Formal, detailed description of what to do
— Testable/checkable

« System-level requirement

— It must traverse an indoor environment

— It must be able to travel from start to goal
« System-level specification

— It must drive =1 m/s on tile floor at 10% grade
— If a safe* path exists, robot must find it in 600s

8

* Explain what to do not how to do
» Good specifications are:

— Complete
Precise Concise
— Consistent
— Concise e f‘z&x»i:
— PreC|Se Complete Consistent

Ernst, Specifications, 2005 9

* What are the automated
vacuum’s requirements?

* What are the automated
vacuum’s requirements?

— Clean common indoor floor
types
— Clean on a regular schedule

— Navigate around furniture

Example Requiremn__ -

e

* What are the automated
vacuum’s safety

requirements?

 What are the automated
vacuum’s
requirements?
— Always return to base
— Never stall the intake motor
— Can be instantly disabled

* What are the automated
vacuum’s specifications?

— Cleans up to 100sqft in less than 10 min
* Vacuum

— Maintains constant suction of 10-15 cuft/min
* Sensing

— Distance to objects +10mm at 60Hz
* Localization

— Robot will map areas up to 500sqft in 5 min

— Cleans up to 100sqft in less than 10 min
« Vacuum
— Maintains constant suction of 10-15 cuft/min
— Motor shuts off within 2s if it stalls
e Sensing
— Distance to objects +10mm at 60Hz
* Localization
— Robot will map areas up to 500sqft in 5 min
— Specifications about sensing and localization interaction?

Why do we need good specs?

* Mars polar lander (1999) ==
— $165 million robot g

— Soil studies at Martian
South Pole

— Crash landed after Vo
software disengaged engine too early

17

Why do we need good specs?

« “Amagnetic sensor is provided in
each of the three landing legs to
sense touchdown when the lander
contacts the surface, initiating the
shutdown of the descent engines”

* “The software—intended to ignore
touchdown indications prior to the
enabling of the touchdown sensing
logic—was not properly
implemented”

» [JPL Failure Report]

18
GRS

https://ntrs.nasa.gov/api/citations/20000061966/downloads/20000061966.pdf
https://ntrs.nasa.gov/api/citations/20000061966/downloads/20000061966.pdf

e Therac-25 - 1982-1987

— Sqf’gware race cqr]ditions caused massive overdoses in radiation.
3 injuries, 3 fatalities

e Ariane 5 - 1996
— Re-used software from Ariane 4, specs not updated, crashed

 Mars Climate Orbiter - 1999

— One component used metric units, another used imperial units -
led to bad values, crashed

« Boeing 737 MAX - 2018, 2019

— MCAS system over-corrected the plane’s pitch. Two crashes
totaling 346 fatalities

19

* Explain what to do not how to do

» Good specifications are:
— Complete |
— Consistent
— Concise
— Precise

=

Ernst, Specifications, 2005 20

How can we design/check specs?

 |If a safe* path exists, robot must find it in 600s

*What we mean by “safely” can depend on the robot, environment, etc. and must be rigorously specified

For example, recall in Lab 6 we added safe_distance as a tunable parameter
This altered the performance of the algorithm based on what threshold of safety was required

How can we design/check specs?

 If a safe” path exists, robot must find it in 600s

Sense

Perceive

Plan Control Act

World State :

How can we design/check specs?
 If a safe” path exists, robot must find it in 600s

ense ercelve !| onro !l
a

Can it sense and
perceive the
environment to find the

path?
World State :

How can we design/check specs?

 If a safe” path exists, robot must find it in 600s

ense ercelve !| onro !l
a

Given the environment,
can it find the path?

World State :

How can we design/check specs?

 If a safe” path exists, robot must find it in 600s

A < mm

Sense Perceive Plan

Given the path, can it
execute the plan?

World State :

How can we design/check specs?

 If a safe” path exists, robot must find it in 600s

Modeling the world and robot!

World State

 Use abstractions!

 World
— Grid world!

* Robot
— A point that moves up/down/left/right

Modeling for Specifications

Given an environment,
the robot must make a 2D
grid and, if a path exists,

If a safe path exists, robot

must find it

the robot must be able to
plan a path only moving
on the grid

* RODO
— A point that moves up/down/left/right

* Given a model:

— Test/check if the model meets the spec

— Evaluate how well model captures the system
« What if model is too different from system?

— False Positives: model violates, but not system
— False Negatives: system violates, but not model

Modeling for Specification

* Given a model:

— Test/check if the model meets the spec

— Evaluate how well model captures the system
« What if model is too different from system?

— False Positives: model violates, but not system
— False Negatives: system violates, but not model

etly, only tolerate

* Verification
— Analytically prove spec cannot be violated

 Validation

— Gain empirical evidence spec is not violated
* Monitoring

— While deployed, check spec is not violated

31

Verification

* Prove no violation
* Spec: thrust is always positive

calculateThrust() {
thrust = null;
if (measureSpeed() < 50) {
thrust = 200;

model of this system?

}

return thrust; // Will thrust always be positive?

}

32

calculateThrust()

Verification

 Prove no violation ¢

» Spec: thrust is always positive

measuredSpeed()

calculateThrust() { speed < 50
thrust = null;
if (measureSpeed() < 50) {
thrust = 200;
}

return thrust; // Will thrust always be positive?

thrust = 200;

}

return thrust;

calculateThrust()

Verification

 Prove no violation

calculateThrust() {
thrust = null;
if (measureSpeed() < 50) {
thrust = 200;
}

return thrust; // Will thrust always be positive?

}

return thrust;

calculateThrust()

Verification

thrust = null;

* Prove no violation
» Spec: thrust is always positive

measure dSpeed()

calculateThrust() { spee'| < 50
thrust = null;
if (measureSpeed() < 50) {

thrust = 200;

} thrust = 200
return thrust; // Will thrust always be positive?

}

return thrust;

calculateThrust()

Verification

thrust = null;

* Prove no violation
» Spec: thrust is always positive

measure dSpeed()

calculateThrust() { spee'| < 50
thrust = null;
if (measureSpeed() < 50) {

thrust = 200;

} thrust = 200
return thrust; // Will thrust always be positive?

}

return thrust;

calculateThrust()

Verification

calculateThrust() { thrust = null;
thrust = null;
if (measureSpeed() < 50) {
thrust = 200;
speed =

} measuredSpeed()
return thrust; // Will thrust always be positive?

}

speed < 50
measureSpeed() {

return min(45, max(@, sensor_value));

thrust = 200;

return thrust;

calculateThrust()

Verification

calculateThrust() {
thrust = null;
if (measureSpeed() < 50) {
thrust = 200;

}

return thrust; // Will thrust always be positive?

}

measureSpeed() {
return min(45, max(@, sensor_value)); // Limited ©-45

return thrust;

Verification and Overapproximation

« "For every system behavior, does the spec hold”
 For this to be useful, must over approximate

calculateThrust() {
thrust = null;
if (measureSpeed() < 50) {
thrust = 200;

}

// Will thrust always be positive?
return thrust;

}

Verification and Overapproximation

« "For every system behavior, does the spec hold”
 For this to be useful, must over approximate

measureSpeed()

measureSpeed() returns 35

1
calculateThrust() { returns 100

thrust = null;
if (measureSpeed() < 50) {
thrust = 200;

}

// Will thrust always be positive?
return thrust;

}

* Machine Learning

— Given range of inputs, output will be in X
bound

 Control Plans

— Temporal properties: once drone enters, it
won't leave

 Verification can be expensive!
— Computation time to check all behaviors
— Time to develop model of system

—

— Time to handle false-positives

« Can we test that a spec is not violated?

* Spec: thrust is always positive

Input (measuredSpeed) Test Result

calculateThrust() { 0
thrust = null;

if (measureSpeed() < 50) { 1
thrust = 200;

} -1

// Will thrust always be positive? 2
return thrust;

Pass
Pass
Pass
Pass

« Can we test that a spec is not violated?

* Spec: thrust is always positive

calculateThrust() { Fail
thrust = null;)
if (measureSpeed() < 50) { Fail
thrust = 200; .

} Fail

// Will thrust always be positive?
return thrust;

« Can we test that a spec is not violated?
* Spec: thrust is always positive

Input (measuredSpeed) Test Result

calculateThrust() { 2147483647 Fail
thrust = null; .)
if (measureSpeed() < 50) { Infinity Fail
} thrust = 200; NaN Eail

// Will thrust always be positive?
return thrust;

}

« Can we test that a spec is not violated?

* Spec: thrust is always positive

calculateThrust() {
thrust = null;
if (measureSpeed() < 50) {
thrust = 200;

}

// Will thrust always be positive?
return thrust;

Input (measuredSpeed) Test Result

2147483647
Infinity

NaN

50

Fail
Fail
Fall
Fail

Validation

 Validation provides util when tests fail
» Lack of failures doesn’t mean none exist
» Success is evidence for that input

measureSpeed()
returns NaN

measureSpeed()
returns 0

calculateThrust() {

Set of Discrete
Validated
Behaviors

Runtime Monitoring

» Constantly check spec live in deployment
* |f violated (or about to), intervene

Watchdog Timer:
« Constantly check if the system is
“stuck” and intervene

» Constantly check spec live in deployment
* |f violated (or about to), intervene

thrust _monitor() {
thrust = calculateThrust();
if (monitor violated(thrust)) { // Specification violated!
turnOffEngine();

}
}

monitor_violated(thrust) {
return !(thrust > 0)

}
49
GRS

* Therac-25: radiation therapy system
designed to emit controlled doses

« Software bugs caused it to emit lethal
doses under certain (rare) conditions

* How could monitoring have helped?

50
GRS

A dedicated, consistent
way to stop, disarm,
Immobilize, or otherwise
disable the robot
— Industrial robotics
— Nuclear robotics
— Field robotics
— Our robot vacuum

51
GRS

Start from initial spec for go-to-goal robot
Design a spec to handle all possible scenarios

Before class on Wed: blackboard submission
on initial spec

During class on Wed: we will work in groups to
refine

Your robot serves the inside of Boswell, delivering catering
orders from a food truck outside. The robot starts each mission
in front of Boswell fully charged, loaded with the customer’s
order, and is sent on a go-to-goal mission to one of the rooms in
Boswell. The robot has a map of the static environment (walls,
doors, elevators, etc.) but does not know the locations of any
dynamic obstacles (tables, chairs, people, etc.). By connecting
wirelessly to the building’s network, the robot can contact the
elevator/powered doors to wirelessly “push” any of the
elevator/door’s buttons. The robot must navigate through the
building to the door outside of the customer, wait for the food to
be delivered, then return to charge or receive the next order.

53

Turn on

Engage
Disengage
Emergency Stop
Open Hatch
Toggle Hatch Lock
Set Geofence™: 2D

« Set Exclusion Zones*
(obstacles): 2D

« (o to goal*: 2D location

*each floor can be a separate
map

« LiDAR mounted on top (assume infinite precision)
 Bump sensor on entire front

« Non-slip rubber tires can reach 5m/s

« Robot can only rotate in place or move forward

« Battery capable of operating for at least 30 min

» Wireless capabilities to:

— “push” buttons on elevator/door. Elevator/door responds with current
state

— Communicate to user/customer
« Top-mounted speakers
« Hatch that can lock/unlock/open to release order to customer

55

« The robot must always reach its goal, deliver the order, and return to base
 When the robot turns on, it is not engaged

« When e-stopped, the robot immediately stops until it is turned off/on again
« When disengaged, the robot safely stops operation

« The robot must never enter an exclusion zone or leave the geofence

« The robot must always preserve its ability to complete the mission

« The robot must never move while disengaged

* The robot must never run out of battery

« The robot must never collide with an obstacle at >2m/s

« The robot must immediately stop contact after collision

« If the goal cannot be achieved because of an exclusion zone/geofence, the
robot must ask the user for an override

56

a > b

What happens if a GOAL command is sent after an ESTOP
command?

What is the mission cruising speed of the robot?

How does the robot respond when it receives a new
geofence that doesn’t include the robot?

What happens when the robot approaches an obstacle on
the way to the goal?

Given these requirements, describe one scenario you are
unsure about designing a specification for (similar to the
above).

Lab 8 In-Class Revisions

https://forms.office.com/r/iReEGJAUZ7

58

https://forms.office.com/r/iReEGJAUZ7

	Slide 3: Specifications & Safety
	Slide 4: Software Lifecycle
	Slide 5: Software Lifecycle
	Slide 6
	Slide 7: Requirements vs Specifications
	Slide 8: Req vs Spec: Path-finding Robot
	Slide 9: Specification Goals
	Slide 10: Example Requirements
	Slide 11: Example Requirements
	Slide 12: Example Requirements
	Slide 13: Example Requirements
	Slide 14: Example Specifications
	Slide 15: System vs Component Specs
	Slide 16: System vs Component Safety
	Slide 17: Why do we need good specs?
	Slide 18: Why do we need good specs?
	Slide 19: Paying attention to specs…
	Slide 20: Specification Goals
	Slide 21: How can we design/check specs?
	Slide 22: How can we design/check specs?
	Slide 23: How can we design/check specs?
	Slide 24: How can we design/check specs?
	Slide 25: How can we design/check specs?
	Slide 26: How can we design/check specs?
	Slide 27: Modeling for Specifications
	Slide 28: Modeling for Specifications
	Slide 29: Modeling for Specification
	Slide 30: Modeling for Specification
	Slide 31: Using Specifications
	Slide 32: Verification
	Slide 33: Verification
	Slide 34: Verification
	Slide 35: Verification
	Slide 36: Verification
	Slide 37: Verification
	Slide 38: Verification
	Slide 39: Verification and Overapproximation
	Slide 40: Verification and Overapproximation
	Slide 41: Verification of Complex Properties
	Slide 42: Verification of Complex Properties
	Slide 43: Validation
	Slide 44: Validation
	Slide 45: Validation
	Slide 46: Validation
	Slide 47: Validation
	Slide 48: Runtime Monitoring
	Slide 49: Runtime Monitoring
	Slide 50: Runtime Monitoring
	Slide 51: Runtime Monitoring – ESTOP
	Slide 52: “Lab” 8 – Designing Specs
	Slide 53: Lab 8 – Scenario Description
	Slide 54: Lab 8 – Robot Commands
	Slide 55: Lab 8 – Robot Capabilities
	Slide 56: Lab 8 – Reqs and Specs
	Slide 57: Lab 8 – Initial Questions (50%)
	Slide 58

