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Software Lifecycle

• What do we specify?

• How do we know it is correct?
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Software Lifecycle

• What do we specify?

• How do we know it is correct?

• How do we know it is safe?

– Acceptable Risk

– Within time/cost/capability

– Treating system as a whole
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https://sma.nasa.gov/sma-disciplines/system-safety
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http://www.ricardoruizlopez.com/2012/09/10/what-would-you-like-software-specification/



Requirements vs Specifications

• Requirement

– Broad description of goal – User stories

– Not directly testable

• Specification

– Formal, detailed description of what to do

– Testable/checkable
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Req vs Spec: Path-finding Robot

• System-level requirement

– It must traverse an indoor environment

– It must be able to travel from start to goal

• System-level specification

– It must drive ≥1 m/s on tile floor at 10% grade

– If a safe* path exists, robot must find it in 600s 
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Specification Goals

• Explain what to do not how to do

• Good specifications are:

– Complete

– Consistent

– Concise

– Precise

9Ernst, Specifications, 2005

Complete                                  Consistent

Precise                                      Concise



Example Requirements

• What are the automated 

vacuum’s requirements? 
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Example Requirements

• What are the automated 

vacuum’s requirements? 

– Clean common indoor floor 

types

– Clean on a regular schedule

– Navigate around furniture
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Example Requirements

• What are the automated 

vacuum’s safety 

requirements? 
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Example Requirements

• What are the automated 

vacuum’s safety 

requirements?

– Always return to base

– Never stall the intake motor

– Can be instantly disabled
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Example Specifications

• What are the automated 

vacuum’s specifications? 
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System vs Component Specs
• Vacuum as a whole:

– Cleans up to 100sqft in less than 10 min

• Vacuum
– Maintains constant suction of 10-15 cuft/min

• Sensing
– Distance to objects ±10mm at 60Hz

• Localization
– Robot will map areas up to 500sqft in 5 min
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System vs Component Safety
• Vacuum as a whole:

– Cleans up to 100sqft in less than 10 min

• Vacuum
– Maintains constant suction of 10-15 cuft/min

– Motor shuts off within 2s if it stalls

• Sensing
– Distance to objects ±10mm at 60Hz

• Localization
– Robot will map areas up to 500sqft in 5 min

– Specifications about sensing and localization interaction?
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Why do we need good specs?

• Mars polar lander (1999)

– $165 million robot

– Soil studies at Martian
South Pole

– Crash landed after
software disengaged engine too early
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Why do we need good specs?
• “A magnetic sensor is provided in 

each of the three landing legs to 
sense touchdown when the lander 
contacts the surface, initiating the 
shutdown of the descent engines”​

• “The software—intended to ignore 
touchdown indications prior to the 
enabling of the touchdown sensing 
logic—was not properly 
implemented”

• [JPL Failure Report]
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https://ntrs.nasa.gov/api/citations/20000061966/downloads/20000061966.pdf
https://ntrs.nasa.gov/api/citations/20000061966/downloads/20000061966.pdf


Paying attention to specs…
• Therac-25 - 1982-1987​

– Software race conditions caused massive overdoses in radiation. 
3 injuries, 3 fatalities​

• Ariane 5 - 1996​
– Re-used software from Ariane 4, specs not updated, crashed​

• Mars Climate Orbiter - 1999​
– One component used metric units, another used imperial units - 

led to bad values, crashed​

• Boeing 737 MAX - 2018, 2019​
– MCAS system over-corrected the plane’s pitch. Two crashes 

totaling 346 fatalities
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Specification Goals

• Explain what to do not how to do

• Good specifications are:

– Complete

– Consistent

– Concise

– Precise

20Ernst, Specifications, 2005

How do we verify, validate, and 

enforce our specifications?



How can we design/check specs?

• If a safe* path exists, robot must find it in 600s 

21

*What we mean by “safely” can depend on the robot, environment, etc. and must be rigorously specified

For example, recall in Lab 6 we added safe_distance as a tunable parameter
This altered the performance of the algorithm based on what threshold of safety was required



How can we design/check specs?

• If a safe* path exists, robot must find it in 600s 

22
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How can we design/check specs?

• If a safe* path exists, robot must find it in 600s 

23

Physical 

World State

Sense ControlPerceive Plan Act

Can it sense and 

perceive the 

environment to find the 

path?



How can we design/check specs?

• If a safe* path exists, robot must find it in 600s 

24
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How can we design/check specs?

• If a safe* path exists, robot must find it in 600s 
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Physical 

World State
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How can we design/check specs?

• If a safe* path exists, robot must find it in 600s 
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Physical 

World State

Sense ControlPerceive Plan Act

Given the path, can it 

execute the plan?Modeling the world and robot!



Modeling for Specifications

• Use abstractions!

• World

– Grid world!

• Robot

– A point that moves up/down/left/right
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Modeling for Specifications

• Use abstractions!

• World

– Grid world!

• Robot

– A point that moves up/down/left/right
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If a safe path exists, robot 

must find it

Given an environment, 

the robot must make a 2D 

grid and, if a path exists, 

the robot must be able to 

plan a path only moving 

on the grid



Modeling for Specification

• Given a model:

– Test/check if the model meets the spec

– Evaluate how well model captures the system

• What if model is too different from system?

– False Positives: model violates, but not system

– False Negatives: system violates, but not model

29



Modeling for Specification

• Given a model:

– Test/check if the model meets the spec

– Evaluate how well model captures the system

• What if model is too different from system?

– False Positives: model violates, but not system

– False Negatives: system violates, but not model

30

For safety, only tolerate false positives!



Using Specifications

• Verification

– Analytically prove spec cannot be violated

• Validation

– Gain empirical evidence spec is not violated

• Monitoring

– While deployed, check spec is not violated

31



Verification

• Prove no violation

• Spec: thrust is always positive

calculateThrust() {​
  thrust = null;​
  if (measureSpeed() < 50) {​
    thrust = 200;​
  }​
  return thrust; // Will thrust always be positive?​
}

32

How do we build a 

model of this system?



Verification

• Prove no violation

• Spec: thrust is always positive

calculateThrust() {​
  thrust = null;​
  if (measureSpeed() < 50) {​
    thrust = 200;​
  }​
  return thrust; // Will thrust always be positive?​
}

33

calculateThrust()

thrust = null;

speed < 50

thrust = 200;

return thrust;

speed = 

measuredSpeed()



Verification

• Prove no violation

• Spec: thrust is always positive

calculateThrust() {​
  thrust = null;​
  if (measureSpeed() < 50) {​
    thrust = 200;​
  }​
  return thrust; // Will thrust always be positive?​
}
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calculateThrust()

thrust = null;

speed < 50

thrust = 200;

return thrust;

speed = 

measuredSpeed()



Verification

• Prove no violation

• Spec: thrust is always positive

calculateThrust() {​
  thrust = null;​
  if (measureSpeed() < 50) {​
    thrust = 200;​
  }​
  return thrust; // Will thrust always be positive?​
}
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calculateThrust()

thrust = null;

speed < 50

thrust = 200;

return thrust;

speed = 

measuredSpeed()



Verification

• Prove no violation

• Spec: thrust is always positive

calculateThrust() {​
  thrust = null;​
  if (measureSpeed() < 50) {​
    thrust = 200;​
  }​
  return thrust; // Will thrust always be positive?​
}
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calculateThrust()

thrust = null;

speed < 50

thrust = 200;

return thrust;

speed = 

measuredSpeed()

Any speed < 50 = violation!



Verification
calculateThrust() {​
  thrust = null;​
  if (measureSpeed() < 50) {​
    thrust = 200;​
  }​
  return thrust; // Will thrust always be positive?
}

measureSpeed() {

  return min(45, max(0, sensor_value));

}
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calculateThrust()

thrust = null;

speed < 50

thrust = 200;

return thrust;

speed = 

measuredSpeed()



Verification
calculateThrust() {​
  thrust = null;​
  if (measureSpeed() < 50) {​
    thrust = 200;​
  }​
  return thrust; // Will thrust always be positive?
}

measureSpeed() {

  return min(45, max(0, sensor_value)); // Limited 0-45

}
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calculateThrust()

thrust = null;

speed < 50

thrust = 200;

return thrust;

speed = 

measuredSpeed()



Verification and Overapproximation

• “For every system behavior, does the spec hold”

• For this to be useful, must over approximate

calculateThrust() {​
  thrust = null;​
  if (measureSpeed() < 50) {​
    thrust = 200;​
  }

  // Will thrust always be positive?
  return thrust;

}

39

System Behaviors Checked

by Verification 

Possible 

System 

Behaviors



Verification and Overapproximation

• “For every system behavior, does the spec hold”

• For this to be useful, must over approximate

calculateThrust() {​
  thrust = null;​
  if (measureSpeed() < 50) {​
    thrust = 200;​
  }

  // Will thrust always be positive?
  return thrust;

}

40

System Behaviors Checked

by Verification 

Possible 

System 

Behaviors

measureSpeed() 

returns 100

measureSpeed() 

returns 35



Verification of Complex Properties

• Machine Learning

– Given range of inputs, output will be in X 

bound

• Control Plans

– Temporal properties: once drone enters, it 

won’t leave

41



Verification of Complex Properties

• Verification can be expensive!

– Computation time to check all behaviors

– Time to develop model of system

– Time to handle false-positives

42



Validation

• Can we test that a spec is not violated?

• Spec: thrust is always positive

calculateThrust() {​
  thrust = null;​
  if (measureSpeed() < 50) {​
    thrust = 200;​
  }​

 // Will thrust always be positive?
  return thrust;

}

43

Input (measuredSpeed) Test Result

0 Pass

1 Pass

-1 Pass

2 Pass



Validation

• Can we test that a spec is not violated?

• Spec: thrust is always positive

calculateThrust() {​
  thrust = null;​
  if (measureSpeed() < 50) {​
    thrust = 200;​
  }​

 // Will thrust always be positive?
  return thrust;

}

44

Input (measuredSpeed) Test Result

Fail

Fail

Fail



Validation

• Can we test that a spec is not violated?

• Spec: thrust is always positive

calculateThrust() {​
  thrust = null;​
  if (measureSpeed() < 50) {​
    thrust = 200;​
  }​

 // Will thrust always be positive?
  return thrust;

}

45

Input (measuredSpeed) Test Result

2147483647 Fail

Infinity Fail

NaN Fail



Validation

• Can we test that a spec is not violated?

• Spec: thrust is always positive

calculateThrust() {​
  thrust = null;​
  if (measureSpeed() < 50) {​
    thrust = 200;​
  }​

 // Will thrust always be positive?
  return thrust;

}

46

Input (measuredSpeed) Test Result

2147483647 Fail

Infinity Fail

NaN Fail

50 Fail



Validation

• Validation provides util when tests fail

• Lack of failures doesn’t mean none exist

• Success is evidence for that input

calculateThrust() {​
  thrust = null;​
  if (measureSpeed() < 50) {​
    thrust = 200;​
  }​
 // Will thrust always be positive?
  return thrust;
}

47

Possible System 

Behaviors

Set of Discrete 

Validated 

Behaviors

measureSpeed() 

returns NaN

measureSpeed() 

returns 0

It is important to design a robust 

test plan to exercise the system!



Runtime Monitoring

• Constantly check spec live in deployment

• If violated (or about to), intervene

48

Watchdog Timer:

• Constantly check if the system is 

“stuck” and intervene 



Runtime Monitoring
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• Constantly check spec live in deployment

• If violated (or about to), intervene

thrust_monitor() { 
  thrust = calculateThrust();
  if (monitor_violated(thrust)) { // Specification violated! 
    turnOffEngine(); 
  }
}
monitor_violated(thrust) {
  return !(thrust > 0) 
}



Runtime Monitoring

• Therac-25: radiation therapy system 

designed to emit controlled doses

• Software bugs caused it to emit lethal 

doses under certain (rare) conditions

• How could monitoring have helped?

50



Runtime Monitoring – ESTOP

51

• A dedicated, consistent 
way to stop, disarm, 
immobilize, or otherwise 
disable the robot 

– Industrial robotics

– Nuclear robotics

– Field robotics

– Our robot vacuum



“Lab” 8 – Designing Specs 

• Start from initial spec for go-to-goal robot

• Design a spec to handle all possible scenarios

• Before class on Wed: blackboard submission 

on initial spec

• During class on Wed: we will work in groups to 

refine

52



Lab 8 – Scenario Description
Your robot serves the inside of Boswell, delivering catering 
orders from a food truck outside. The robot starts each mission 
in front of Boswell fully charged, loaded with the customer’s 
order, and is sent on a go-to-goal mission to one of the rooms in 
Boswell. The robot has a map of the static environment (walls, 
doors, elevators, etc.) but does not know the locations of any 
dynamic obstacles (tables, chairs, people, etc.). By connecting 
wirelessly to the building’s network, the robot can contact the 
elevator/powered doors to wirelessly “push” any of the 
elevator/door’s buttons. The robot must navigate through the 
building to the door outside of the customer, wait for the food to 
be delivered, then return to charge or receive the next order.​
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Lab 8 – Robot Commands

• Turn on

• Engage

• Disengage

• Emergency Stop

• Open Hatch

• Toggle Hatch Lock

• Set Geofence*: 2D

• Set Exclusion Zones* 

(obstacles): 2D 

• Go to goal*: 2D location

*each floor can be a separate 

map
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Lab 8 – Robot Capabilities
• LiDAR mounted on top (assume infinite precision)

• Bump sensor on entire front

• Non-slip rubber tires can reach 5m/s

• Robot can only rotate in place or move forward

• Battery capable of operating for at least 30 min

• Wireless capabilities to:
– “push” buttons on elevator/door. Elevator/door responds with current 

state

– Communicate to user/customer

• Top-mounted speakers

• Hatch that can lock/unlock/open to release order to customer
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Lab 8 – Reqs and Specs
• The robot must always reach its goal, deliver the order, and return to base

• When the robot turns on, it is not engaged

• When e-stopped, the robot immediately stops until it is turned off/on again

• When disengaged, the robot safely stops operation

• The robot must never enter an exclusion zone or leave the geofence

• The robot must always preserve its ability to complete the mission

• The robot must never move while disengaged

• The robot must never run out of battery

• The robot must never collide with an obstacle at >2m/s

• The robot must immediately stop contact after collision

• If the goal cannot be achieved because of an exclusion zone/geofence, the 
robot must ask the user for an override
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Lab 8 – Initial Questions (50%)
1. What happens if a GOAL command is sent after an ESTOP 

command?

2. What is the mission cruising speed of the robot?

3. How does the robot respond when it receives a new 
geofence that doesn’t include the robot?

4. What happens when the robot approaches an obstacle on 
the way to the goal?

5. Given these requirements, describe one scenario you are 
unsure about designing a specification for (similar to the 
above).
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https://forms.office.com/r/iReEGJAUZ7 

https://forms.office.com/r/iReEGJAUZ7
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