
Specifications & Safety

CSCI 420-04 Robotics

Software Lifecycle

• What do we specify?

• How do we know it is correct?

4

Specification

Architecture

Implementation

Testing

Deployment

Software Lifecycle

• What do we specify?

• How do we know it is correct?

• How do we know it is safe?

– Acceptable Risk

– Within time/cost/capability

– Treating system as a whole

5

Specification

Architecture

Implementation

Testing

Deployment

https://sma.nasa.gov/sma-disciplines/system-safety

6
http://www.ricardoruizlopez.com/2012/09/10/what-would-you-like-software-specification/

Requirements vs Specifications

• Requirement

– Broad description of goal – User stories

– Not directly testable

• Specification

– Formal, detailed description of what to do

– Testable/checkable

7

Req vs Spec: Path-finding Robot

• System-level requirement

– It must traverse an indoor environment

– It must be able to travel from start to goal

• System-level specification

– It must drive ≥1 m/s on tile floor at 10% grade

– If a safe* path exists, robot must find it in 600s

8

Specification Goals

• Explain what to do not how to do

• Good specifications are:

– Complete

– Consistent

– Concise

– Precise

9Ernst, Specifications, 2005

Complete Consistent

Precise Concise

Example Requirements

• What are the automated

vacuum’s requirements?

10

Example Requirements

• What are the automated

vacuum’s requirements?

– Clean common indoor floor

types

– Clean on a regular schedule

– Navigate around furniture

11

Example Requirements

• What are the automated

vacuum’s safety

requirements?

12

Example Requirements

• What are the automated

vacuum’s safety

requirements?

– Always return to base

– Never stall the intake motor

– Can be instantly disabled

13

Example Specifications

• What are the automated

vacuum’s specifications?

14

System vs Component Specs
• Vacuum as a whole:

– Cleans up to 100sqft in less than 10 min

• Vacuum
– Maintains constant suction of 10-15 cuft/min

• Sensing
– Distance to objects ±10mm at 60Hz

• Localization
– Robot will map areas up to 500sqft in 5 min

15

System vs Component Safety
• Vacuum as a whole:

– Cleans up to 100sqft in less than 10 min

• Vacuum
– Maintains constant suction of 10-15 cuft/min

– Motor shuts off within 2s if it stalls

• Sensing
– Distance to objects ±10mm at 60Hz

• Localization
– Robot will map areas up to 500sqft in 5 min

– Specifications about sensing and localization interaction?

16

Why do we need good specs?

• Mars polar lander (1999)

– $165 million robot

– Soil studies at Martian
South Pole

– Crash landed after
software disengaged engine too early

17

Why do we need good specs?
• “A magnetic sensor is provided in

each of the three landing legs to
sense touchdown when the lander
contacts the surface, initiating the
shutdown of the descent engines”​

• “The software—intended to ignore
touchdown indications prior to the
enabling of the touchdown sensing
logic—was not properly
implemented”

• [JPL Failure Report]

18

https://ntrs.nasa.gov/api/citations/20000061966/downloads/20000061966.pdf
https://ntrs.nasa.gov/api/citations/20000061966/downloads/20000061966.pdf

Paying attention to specs…
• Therac-25 - 1982-1987​

– Software race conditions caused massive overdoses in radiation.
3 injuries, 3 fatalities​

• Ariane 5 - 1996​
– Re-used software from Ariane 4, specs not updated, crashed​

• Mars Climate Orbiter - 1999​
– One component used metric units, another used imperial units -

led to bad values, crashed​

• Boeing 737 MAX - 2018, 2019​
– MCAS system over-corrected the plane’s pitch. Two crashes

totaling 346 fatalities

19

Specification Goals

• Explain what to do not how to do

• Good specifications are:

– Complete

– Consistent

– Concise

– Precise

20Ernst, Specifications, 2005

How do we verify, validate, and

enforce our specifications?

How can we design/check specs?

• If a safe* path exists, robot must find it in 600s

21

*What we mean by “safely” can depend on the robot, environment, etc. and must be rigorously specified

For example, recall in Lab 6 we added safe_distance as a tunable parameter
This altered the performance of the algorithm based on what threshold of safety was required

How can we design/check specs?

• If a safe* path exists, robot must find it in 600s

22

Physical

World State

Sense ControlPerceive Plan Act

How can we design/check specs?

• If a safe* path exists, robot must find it in 600s

23

Physical

World State

Sense ControlPerceive Plan Act

Can it sense and

perceive the

environment to find the

path?

How can we design/check specs?

• If a safe* path exists, robot must find it in 600s

24

Physical

World State

Sense ControlPerceive Plan Act

Given the environment,

can it find the path?

How can we design/check specs?

• If a safe* path exists, robot must find it in 600s

25

Physical

World State

Sense ControlPerceive Plan Act

Given the path, can it

execute the plan?

How can we design/check specs?

• If a safe* path exists, robot must find it in 600s

26

Physical

World State

Sense ControlPerceive Plan Act

Given the path, can it

execute the plan?Modeling the world and robot!

Modeling for Specifications

• Use abstractions!

• World

– Grid world!

• Robot

– A point that moves up/down/left/right

27

Modeling for Specifications

• Use abstractions!

• World

– Grid world!

• Robot

– A point that moves up/down/left/right

28

If a safe path exists, robot

must find it

Given an environment,

the robot must make a 2D

grid and, if a path exists,

the robot must be able to

plan a path only moving

on the grid

Modeling for Specification

• Given a model:

– Test/check if the model meets the spec

– Evaluate how well model captures the system

• What if model is too different from system?

– False Positives: model violates, but not system

– False Negatives: system violates, but not model

29

Modeling for Specification

• Given a model:

– Test/check if the model meets the spec

– Evaluate how well model captures the system

• What if model is too different from system?

– False Positives: model violates, but not system

– False Negatives: system violates, but not model

30

For safety, only tolerate false positives!

Using Specifications

• Verification

– Analytically prove spec cannot be violated

• Validation

– Gain empirical evidence spec is not violated

• Monitoring

– While deployed, check spec is not violated

31

Verification

• Prove no violation

• Spec: thrust is always positive

calculateThrust() {​
 thrust = null;​
 if (measureSpeed() < 50) {​
 thrust = 200;​
 }​
 return thrust; // Will thrust always be positive?​
}

32

How do we build a

model of this system?

Verification

• Prove no violation

• Spec: thrust is always positive

calculateThrust() {​
 thrust = null;​
 if (measureSpeed() < 50) {​
 thrust = 200;​
 }​
 return thrust; // Will thrust always be positive?​
}

33

calculateThrust()

thrust = null;

speed < 50

thrust = 200;

return thrust;

speed =

measuredSpeed()

Verification

• Prove no violation

• Spec: thrust is always positive

calculateThrust() {​
 thrust = null;​
 if (measureSpeed() < 50) {​
 thrust = 200;​
 }​
 return thrust; // Will thrust always be positive?​
}

34

calculateThrust()

thrust = null;

speed < 50

thrust = 200;

return thrust;

speed =

measuredSpeed()

Verification

• Prove no violation

• Spec: thrust is always positive

calculateThrust() {​
 thrust = null;​
 if (measureSpeed() < 50) {​
 thrust = 200;​
 }​
 return thrust; // Will thrust always be positive?​
}

35

calculateThrust()

thrust = null;

speed < 50

thrust = 200;

return thrust;

speed =

measuredSpeed()

Verification

• Prove no violation

• Spec: thrust is always positive

calculateThrust() {​
 thrust = null;​
 if (measureSpeed() < 50) {​
 thrust = 200;​
 }​
 return thrust; // Will thrust always be positive?​
}

36

calculateThrust()

thrust = null;

speed < 50

thrust = 200;

return thrust;

speed =

measuredSpeed()

Any speed < 50 = violation!

Verification
calculateThrust() {​
 thrust = null;​
 if (measureSpeed() < 50) {​
 thrust = 200;​
 }​
 return thrust; // Will thrust always be positive?
}

measureSpeed() {

 return min(45, max(0, sensor_value));

}

37

calculateThrust()

thrust = null;

speed < 50

thrust = 200;

return thrust;

speed =

measuredSpeed()

Verification
calculateThrust() {​
 thrust = null;​
 if (measureSpeed() < 50) {​
 thrust = 200;​
 }​
 return thrust; // Will thrust always be positive?
}

measureSpeed() {

 return min(45, max(0, sensor_value)); // Limited 0-45

}

38

calculateThrust()

thrust = null;

speed < 50

thrust = 200;

return thrust;

speed =

measuredSpeed()

Verification and Overapproximation

• “For every system behavior, does the spec hold”

• For this to be useful, must over approximate

calculateThrust() {​
 thrust = null;​
 if (measureSpeed() < 50) {​
 thrust = 200;​
 }

 // Will thrust always be positive?
 return thrust;

}

39

System Behaviors Checked

by Verification

Possible

System

Behaviors

Verification and Overapproximation

• “For every system behavior, does the spec hold”

• For this to be useful, must over approximate

calculateThrust() {​
 thrust = null;​
 if (measureSpeed() < 50) {​
 thrust = 200;​
 }

 // Will thrust always be positive?
 return thrust;

}

40

System Behaviors Checked

by Verification

Possible

System

Behaviors

measureSpeed()

returns 100

measureSpeed()

returns 35

Verification of Complex Properties

• Machine Learning

– Given range of inputs, output will be in X

bound

• Control Plans

– Temporal properties: once drone enters, it

won’t leave

41

Verification of Complex Properties

• Verification can be expensive!

– Computation time to check all behaviors

– Time to develop model of system

– Time to handle false-positives

42

Validation

• Can we test that a spec is not violated?

• Spec: thrust is always positive

calculateThrust() {​
 thrust = null;​
 if (measureSpeed() < 50) {​
 thrust = 200;​
 }​

 // Will thrust always be positive?
 return thrust;

}

43

Input (measuredSpeed) Test Result

0 Pass

1 Pass

-1 Pass

2 Pass

Validation

• Can we test that a spec is not violated?

• Spec: thrust is always positive

calculateThrust() {​
 thrust = null;​
 if (measureSpeed() < 50) {​
 thrust = 200;​
 }​

 // Will thrust always be positive?
 return thrust;

}

44

Input (measuredSpeed) Test Result

Fail

Fail

Fail

Validation

• Can we test that a spec is not violated?

• Spec: thrust is always positive

calculateThrust() {​
 thrust = null;​
 if (measureSpeed() < 50) {​
 thrust = 200;​
 }​

 // Will thrust always be positive?
 return thrust;

}

45

Input (measuredSpeed) Test Result

2147483647 Fail

Infinity Fail

NaN Fail

Validation

• Can we test that a spec is not violated?

• Spec: thrust is always positive

calculateThrust() {​
 thrust = null;​
 if (measureSpeed() < 50) {​
 thrust = 200;​
 }​

 // Will thrust always be positive?
 return thrust;

}

46

Input (measuredSpeed) Test Result

2147483647 Fail

Infinity Fail

NaN Fail

50 Fail

Validation

• Validation provides util when tests fail

• Lack of failures doesn’t mean none exist

• Success is evidence for that input

calculateThrust() {​
 thrust = null;​
 if (measureSpeed() < 50) {​
 thrust = 200;​
 }​
 // Will thrust always be positive?
 return thrust;
}

47

Possible System

Behaviors

Set of Discrete

Validated

Behaviors

measureSpeed()

returns NaN

measureSpeed()

returns 0

It is important to design a robust

test plan to exercise the system!

Runtime Monitoring

• Constantly check spec live in deployment

• If violated (or about to), intervene

48

Watchdog Timer:

• Constantly check if the system is

“stuck” and intervene

Runtime Monitoring

49

• Constantly check spec live in deployment

• If violated (or about to), intervene

thrust_monitor() {
 thrust = calculateThrust();
 if (monitor_violated(thrust)) { // Specification violated!
 turnOffEngine();
 }
}
monitor_violated(thrust) {
 return !(thrust > 0)
}

Runtime Monitoring

• Therac-25: radiation therapy system

designed to emit controlled doses

• Software bugs caused it to emit lethal

doses under certain (rare) conditions

• How could monitoring have helped?

50

Runtime Monitoring – ESTOP

51

• A dedicated, consistent
way to stop, disarm,
immobilize, or otherwise
disable the robot

– Industrial robotics

– Nuclear robotics

– Field robotics

– Our robot vacuum

“Lab” 8 – Designing Specs

• Start from initial spec for go-to-goal robot

• Design a spec to handle all possible scenarios

• Before class on Wed: blackboard submission

on initial spec

• During class on Wed: we will work in groups to

refine

52

Lab 8 – Scenario Description
Your robot serves the inside of Boswell, delivering catering
orders from a food truck outside. The robot starts each mission
in front of Boswell fully charged, loaded with the customer’s
order, and is sent on a go-to-goal mission to one of the rooms in
Boswell. The robot has a map of the static environment (walls,
doors, elevators, etc.) but does not know the locations of any
dynamic obstacles (tables, chairs, people, etc.). By connecting
wirelessly to the building’s network, the robot can contact the
elevator/powered doors to wirelessly “push” any of the
elevator/door’s buttons. The robot must navigate through the
building to the door outside of the customer, wait for the food to
be delivered, then return to charge or receive the next order.​

53

Lab 8 – Robot Commands

• Turn on

• Engage

• Disengage

• Emergency Stop

• Open Hatch

• Toggle Hatch Lock

• Set Geofence*: 2D

• Set Exclusion Zones*

(obstacles): 2D

• Go to goal*: 2D location

*each floor can be a separate

map

54

Lab 8 – Robot Capabilities
• LiDAR mounted on top (assume infinite precision)

• Bump sensor on entire front

• Non-slip rubber tires can reach 5m/s

• Robot can only rotate in place or move forward

• Battery capable of operating for at least 30 min

• Wireless capabilities to:
– “push” buttons on elevator/door. Elevator/door responds with current

state

– Communicate to user/customer

• Top-mounted speakers

• Hatch that can lock/unlock/open to release order to customer

55

Lab 8 – Reqs and Specs
• The robot must always reach its goal, deliver the order, and return to base

• When the robot turns on, it is not engaged

• When e-stopped, the robot immediately stops until it is turned off/on again

• When disengaged, the robot safely stops operation

• The robot must never enter an exclusion zone or leave the geofence

• The robot must always preserve its ability to complete the mission

• The robot must never move while disengaged

• The robot must never run out of battery

• The robot must never collide with an obstacle at >2m/s

• The robot must immediately stop contact after collision

• If the goal cannot be achieved because of an exclusion zone/geofence, the
robot must ask the user for an override

56

Lab 8 – Initial Questions (50%)
1. What happens if a GOAL command is sent after an ESTOP

command?

2. What is the mission cruising speed of the robot?

3. How does the robot respond when it receives a new
geofence that doesn’t include the robot?

4. What happens when the robot approaches an obstacle on
the way to the goal?

5. Given these requirements, describe one scenario you are
unsure about designing a specification for (similar to the
above).

57

58

https://forms.office.com/r/iReEGJAUZ7

https://forms.office.com/r/iReEGJAUZ7

	Slide 3: Specifications & Safety
	Slide 4: Software Lifecycle
	Slide 5: Software Lifecycle
	Slide 6
	Slide 7: Requirements vs Specifications
	Slide 8: Req vs Spec: Path-finding Robot
	Slide 9: Specification Goals
	Slide 10: Example Requirements
	Slide 11: Example Requirements
	Slide 12: Example Requirements
	Slide 13: Example Requirements
	Slide 14: Example Specifications
	Slide 15: System vs Component Specs
	Slide 16: System vs Component Safety
	Slide 17: Why do we need good specs?
	Slide 18: Why do we need good specs?
	Slide 19: Paying attention to specs…
	Slide 20: Specification Goals
	Slide 21: How can we design/check specs?
	Slide 22: How can we design/check specs?
	Slide 23: How can we design/check specs?
	Slide 24: How can we design/check specs?
	Slide 25: How can we design/check specs?
	Slide 26: How can we design/check specs?
	Slide 27: Modeling for Specifications
	Slide 28: Modeling for Specifications
	Slide 29: Modeling for Specification
	Slide 30: Modeling for Specification
	Slide 31: Using Specifications
	Slide 32: Verification
	Slide 33: Verification
	Slide 34: Verification
	Slide 35: Verification
	Slide 36: Verification
	Slide 37: Verification
	Slide 38: Verification
	Slide 39: Verification and Overapproximation
	Slide 40: Verification and Overapproximation
	Slide 41: Verification of Complex Properties
	Slide 42: Verification of Complex Properties
	Slide 43: Validation
	Slide 44: Validation
	Slide 45: Validation
	Slide 46: Validation
	Slide 47: Validation
	Slide 48: Runtime Monitoring
	Slide 49: Runtime Monitoring
	Slide 50: Runtime Monitoring
	Slide 51: Runtime Monitoring – ESTOP
	Slide 52: “Lab” 8 – Designing Specs
	Slide 53: Lab 8 – Scenario Description
	Slide 54: Lab 8 – Robot Commands
	Slide 55: Lab 8 – Robot Capabilities
	Slide 56: Lab 8 – Reqs and Specs
	Slide 57: Lab 8 – Initial Questions (50%)
	Slide 58

