
Sensors and Noise Management
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What is a sensor?

• Transduce energy into measurement

• Observe a physical phenomenon in 

physical units

– Are the units aligned?

• Provides a window into the world or robot
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What is in a sensor?

• Example: Accelerometer
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What is in a sensor?

• Example: Accelerometer

6https://learn.sparkfun.com/tutorials/accelerometer-basics/all
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Sensors in ROS

• Sensor Node Implementations

• Sensor Msgs

• BatteryState

• Image

• LaserScan

• PointCloud

• Temperature
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Types of Sensors

• Inward vs Outward

– Proprioceptive: measures the system

– Exteroceptive: measures the world

• Active vs Passive

– Passive: receives energy from world

– Active: sends energy into world
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Types of Sensors
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• Exteroceptive

– Passive: Camera, Compass

– Active: LiDAR, Radar, Ultrasonic

• Proprioceptive:

– Passive: IMU, Encoder

– Reference: Global Navigation Satellite System



How does our drone sense?

• Altitude

– Lab 2 uses the pressure sensor

– What else could we use?
• GPS

• Range finder
– LiDAR

– Radar

– Ultrasonic
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How do range finders work?

11

Ground

How far is it to 

the ground?



How do range finders work?
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Ground

1. Emit pulse



How do range finders work?
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Ground

1. Emit pulse

2. Pulse reflects (echo)



How do range finders work?
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Ground

1. Emit pulse

2. Pulse reflects (echo)

3. Pulse received by sensor

What do we measure?



How do range finders work?
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Ground

1. Emit pulse

2. Pulse reflects (echo)

3. Pulse received by sensor

Known: 

• Time between pulse sent and received 𝑡𝑑𝑖𝑓𝑓 = 𝑡𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑒𝑛𝑑 

• Velocity of signal (𝑣𝑝)

Solve:

 𝑑𝑔𝑟𝑜𝑢𝑛𝑑 =
1

2
𝑑𝑡𝑟𝑎𝑣𝑒𝑙 =

1

2
(𝑡𝑑𝑖𝑓𝑓 ⋅ 𝑣𝑝)



How do range finders work?
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Ground

Solve:  𝑑𝑔𝑟𝑜𝑢𝑛𝑑 =
1

2
𝑑𝑡𝑟𝑎𝑣𝑒𝑙 =

1

2
(𝑡𝑑𝑖𝑓𝑓 ⋅ 𝑣𝑝)

Example: Ultrasonic

• 𝑣𝑝 = 343
𝑚

𝑠

• 𝑡𝑑𝑖𝑓𝑓 = 17.5𝑚𝑠

• 𝑑𝑔𝑟𝑜𝑢𝑛𝑑 =
1

2
17.5𝑚𝑠 ⋅

343𝑚

𝑠

• 𝑑𝑔𝑟𝑜𝑢𝑛𝑑 =
1

2
17.5𝑚𝑠 ⋅

1𝑠

1000𝑚𝑠
⋅
343𝑚

𝑠

• 𝑑𝑔𝑟𝑜𝑢𝑛𝑑 =
1

2

17.5𝑚𝑠⋅1𝑠⋅343𝑚

1000𝑚𝑠⋅1𝑠

• 𝑑𝑔𝑟𝑜𝑢𝑛𝑑 = 3.00𝑚



How do range finders work?
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Ground

1. Emit pulse

2. Pulse reflects (echo)

3. Pulse received by sensor

4. Signal is interpreted

3
.0
0
𝑚



How do range finders work?
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Ground

Solve:  𝑑𝑔𝑟𝑜𝑢𝑛𝑑 =
1

2
𝑑𝑡𝑟𝑎𝑣𝑒𝑙 =

1

2
(𝑡𝑑𝑖𝑓𝑓 ⋅ 𝑣𝑝)

Example: Ultrasonic

• 𝑣𝑝 = 343
𝑚

𝑠

• 𝑡𝑑𝑖𝑓𝑓 = 17.5𝑚𝑠

• 𝑑𝑔𝑟𝑜𝑢𝑛𝑑 = 3.00𝑚

Leaky Abstractions:

• Speed is 
343𝑚

𝑠
 when:

• 20°C, dry, sea level

• Ground is flat, level

• Drone is stationary 

relative to the ground



Sensors can be inaccurate

• Each reading is a single sample
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Sensors can be inaccurate

• Each reading is a single sample

• From a distribution
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Sensors can be inaccurate

• Each reading is a single sample

• From a distribution
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Sensors can be inaccurate

• Each reading is a single sample

• From a distribution

– Can have outliers
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Sensors can be inaccurate

• Each reading is a single sample

• From a distribution

– Can have outliers

– Can shift

23
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Managing noise

• Calibration

• Filtering

• Fusion
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Calibration

• Shift due to environmental assumption

• Need to adjust for new context

• To Calibrate:

– Conduct new standardized tests

– Recompute constants and errors

– Redefine model parameters

25



How to calibrate?

26

Ground

Solve:  𝑑𝑔𝑟𝑜𝑢𝑛𝑑 =
1

2
𝑑𝑡𝑟𝑎𝑣𝑒𝑙 =

1

2
(𝑡𝑑𝑖𝑓𝑓 ⋅ 𝑣𝑝)

Example: Ultrasonic

• 𝒗𝒑 = 𝟑𝟒𝟑
𝒎

𝒔

• 𝑡𝑑𝑖𝑓𝑓 = 17.5𝑚𝑠

• 𝑑𝑔𝑟𝑜𝑢𝑛𝑑 = 3.00𝑚

Leaky Abstractions:

• Speed is 
343𝑚

𝑠
 when:

• 20°C, dry, sea level

• Ground is flat, level

• Drone is stationary 

relative to the groundKnown: 

• Time

• Velocity?



How do we find velocity?

• Conduct new standardized tests

– Mount drone at fixed, known height

– Measure time to compute velocity

27

Ground



How do we find velocity?

• Conduct new standardized tests

– Mount drone at fixed, known height

– Measure time to compute velocity

– Repeat for many heights

28

Ground

height

ti
m

e

Original calibration

New calibration



Recalibrate based on parameters

Altitude Temperature Speed of Sound

Meters (m) Celsius (°C) m/s

0 (sea level) 21 344

3048 (10k feet) -4.8 328

6096 (20k feet) -24.6 316

9144 (30k feet) -44.4 303

29

You may be able to look up parameters based on your context!



Filtering

• Sensors are noisy

– Physical disturbances

– Unaccounted for variables
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Filtering

• Signal Processing

– High Pass

– Low Pass

– Band Pass

• Most noise is a different frequency than 

the signal!
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Low Pass Filter: Smoothing

• Moving Average or Window Filter
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Low Pass Filter: Smoothing

• Moving Average or Window Filter

– 𝑦𝑡 =
𝑥𝑡+⋯+𝑥𝑡−𝑛

𝑛

33
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Low Pass Filter: Smoothing

• Moving Average or Window Filter

– 𝑦𝑡 =
𝑥𝑡+⋯+𝑥𝑡−𝑛

𝑛
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1.01𝑦



Low Pass Filter: Smoothing

• Moving Average or Window Filter

– 𝑦𝑡 =
𝑥𝑡+⋯+𝑥𝑡−𝑛

𝑛
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1.01    0.99    1.03    1.00    0.98    0.99   𝑥

1.01    1.00𝑦



Low Pass Filter: Smoothing

• Moving Average or Window Filter

– 𝑦𝑡 =
𝑥𝑡+⋯+𝑥𝑡−𝑛

𝑛
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Low Pass Filter: Smoothing

• Moving Average or Window Filter

– 𝑦𝑡 =
𝑥𝑡+⋯+𝑥𝑡−𝑛

𝑛
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Low Pass Filter: Smoothing

• Moving Average or Window Filter

– 𝑦𝑡 =
𝑥𝑡+⋯+𝑥𝑡−𝑛

𝑛
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Low Pass Filter: Smoothing

• Moving Average or Window Filter

– 𝑦𝑡 =
𝑥𝑡+⋯+𝑥𝑡−𝑛

𝑛
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Low Pass Filter: Smoothing

• Moving Average or Window Filter

– 𝑦𝑡 =
𝑥𝑡+⋯+𝑥𝑡−𝑛

𝑛
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Low Pass Filter: Smoothing

• Moving Average or Window Filter

– 𝑦𝑡 =
𝑥𝑡+⋯+𝑥𝑡−𝑛

𝑛
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1.01    0.99    1.03    1.00    0.98    0.99   𝑥
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Low Pass Filter: Smoothing

• Moving Average or Window Filter

– 𝑦𝑡 =
𝑥𝑡+⋯+𝑥𝑡−𝑛

𝑛

– Larger Window is

More Smoothing

42



Low Pass Filter: Smoothing

• Moving Average or Window Filter

– 𝑦𝑡 =
𝑥𝑡+⋯+𝑥𝑡−𝑛

𝑛

– Larger Window is

More Smoothing
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Low Pass Filter: Smoothing

• Moving Average or Window Filter

– 𝑦𝑡 =
𝑥𝑡+⋯+𝑥𝑡−𝑛

𝑛

– Larger Window is

More Smoothing

– Larger Window is

More Lag

44



Low Pass Filter: Smoothing

Exponential decay

• Moving Average or Window Filter

– 𝑦𝑡 =
𝑥𝑡+⋯+𝑥𝑡−𝑛

𝑛

• Generalize by weighting

– Linear

– Exponential decay

– Important to tune!
• 𝛼 closer to 1, less filtering

• 𝛼 closer to 0, more filtering
45

𝑦𝑡 = (1 − 𝛼) ⋅ 𝑦𝑡−1 + 𝛼 ⋅ 𝑥𝑡

https://en.wikipedia.org/wiki/Exponential_smoothing


Low Pass Filter: Smoothing
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𝑦𝑡 = (1 − 𝛼) ⋅ 𝑦𝑡−1 + 𝛼 ⋅ 𝑥𝑡

Exponential decay

• Moving Average or Window Filter

– 𝑦𝑡 =
𝑥𝑡+⋯+𝑥𝑡−𝑛

𝑛

• Generalize by weighting

– Linear

– Exponential decay

– Important to tune!
• 𝛼 closer to 1, less filtering

• 𝛼 closer to 0, more filtering

https://en.wikipedia.org/wiki/Exponential_smoothing


Sensor Fusion

• Use multiple sources of data:

– More data means less noise

– Different operating profiles

• Redundancy

– One sensor fails, operation continues

• Robustness

– Camera requires ambient light, LiDAR does not

47



Sensor Fusion

• How do we fuse?

– Average

• Weight by

– uncertainty

– reliability

– conditions

– Kalman Filter

48

GPS

Pressure

Ground 

Sensor

Fuse
Altitude 

Estimate



Sensor Fusion

• Fusing Like Data: Weight by Uncertainty
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GPS

Ground 

Sensor

Fuse
Altitude 

Estimate

𝜇𝐺𝑃𝑆, 𝜎𝐺𝑃𝑆

𝜇𝑔𝑟𝑜𝑢𝑛𝑑, 𝜎𝑔𝑟𝑜𝑢𝑛𝑑

𝜇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
𝜎𝑔𝑟𝑜𝑢𝑛𝑑
2 𝜇𝐺𝑃𝑆 + 𝜎𝐺𝑃𝑆

2 𝜇𝑔𝑟𝑜𝑢𝑛𝑑

𝜎𝑔𝑟𝑜𝑢𝑛𝑑
2 + 𝜎𝐺𝑃𝑆

2

𝜎𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
1

1
𝜎𝐺𝑃𝑆
2 +

1
𝜎𝑔𝑟𝑜𝑢𝑛𝑑
2



Sensor Fusion

• Fusing Like Data: Weight by Uncertainty
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GPS

Ground 

Sensor

Fuse
Altitude 

Estimate

𝜇𝐺𝑃𝑆, 𝜎𝐺𝑃𝑆

𝜇𝑔𝑟𝑜𝑢𝑛𝑑, 𝜎𝑔𝑟𝑜𝑢𝑛𝑑

𝜇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
𝜎𝑔𝑟𝑜𝑢𝑛𝑑
2 𝜇𝐺𝑃𝑆 + 𝜎𝐺𝑃𝑆

2 𝜇𝑔𝑟𝑜𝑢𝑛𝑑

𝜎𝑔𝑟𝑜𝑢𝑛𝑑
2 + 𝜎𝐺𝑃𝑆

2

𝜎𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
1

1
𝜎𝐺𝑃𝑆
2 +

1
𝜎𝑔𝑟𝑜𝑢𝑛𝑑
2

Mean is between estimates

Uncertainty is lower than either



Sensor Fusion
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Sensor Fusion
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Time

What is the drone doing?

How can we disambiguate?



Sensor Fusion: Kalman

• Fusing disparate data: Kalman Filter

– Canonical example:

• Fuse position + velocity to estimate position

53



Sensor Fusion

54
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𝑣 = −5 ± 1
𝑚

𝑠

Use velocity to predict new position

Errors increase due to compounding uncertainty



Sensor Fusion
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A
lt
it
u

d
e
 R

e
a
d
in

g

Time

𝑣 = −5 ± 1
𝑚

𝑠

Use velocity to predict new position

Errors increase due to compounding uncertainty

Refine estimate using next measured position – reduce uncertainty

New Prediction

New Measurement

Initial Estimate



Sensor Fusion: Kalman

56

Initial 

Prediction

Update 

Prediction

Predict 

Next Value

Position 

Measurement

Velocity 

Measurement

Initial, high-uncertainty 

guess

Refined, low-

uncertainty estimate

Less-certain guess at 

future state

You’ll develop a version of this in Lab 4

See lab documents for equations

Rest of 

System



Sensors and Noise Handling

• Sensors capture robot and world state

• We often measure something other than what 
we want to know

• All sensors have noise, imperfections, 
uncertainty
– Calibration

– Filtering

– Fusion

57
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