
Sensors and Noise Management

CSCI 420-04 Robotics

What is a sensor?

- Transduce energy into measurement
- Observe a physical phenomenon in physical units
 - Are the units aligned?
- Provides a window into the world or robot

What is i

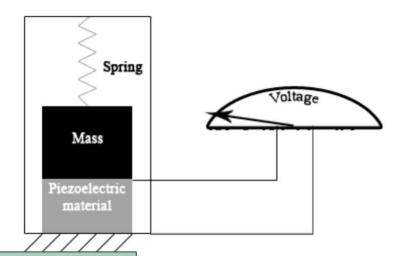
Example: Accelero

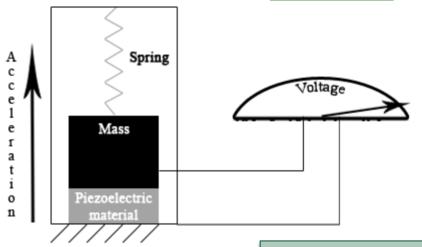
https://www.sparkfun.com/sparkfun-triple-axis-accelerometer-breakout-adxl345.html

SPECIFICATIONS

 $T_A = 25$ °C, $V_S = 2.5$ V, $V_{DD \, I/O} = 1.8$ V, acceleration = 0 g, $C_S = 1$ μF tantalum, $C_{IO} = 0.1$ μF , unless otherwise noted.

Table 1. Specifications1


Parameter	Test Conditions	Min	Тур	Max	Unit
SENSOR INPUT	Each axis				
Measurement Range	User selectable		$\pm 2, \pm 4, \pm 8, \pm 1$	6	g
Nonlinearity	Percentage of full scale		±0.5		%
Inter-Axis Alignment Error			±0.1		Degrees
Cross-Axis Sensitivity ²			±1		%
OUTPUT RESOLUTION	Each axis				
All g Ranges	10-bit resolution		10		Bits
±2 q Range	Full resolution		10		Bits
±4 g Range	Full resolution		11		Bits
±8 g Range	Full resolution		12		Bits
±16 <i>g</i> Range	Full resolution		13		Bits
SENSITIVITY	Each axis				
Sensitivity at X _{OUT} , Y _{OUT} , Z _{OUT}	±2 a. 10-bit or full resolution	232	256	286	LSB/q
Scale Factor at Xout, Yout, Zout	$\pm 2 q$, 10-bit or full resolution	3.5	3.9	4.3	mg/LSB
Sensitivity at Xout, Yout, Zout	±4 q, 10-bit resolution	116	128	143	LSB/g
Scale Factor at Xout, Yout, Zout	±4 g, 10-bit resolution	7.0	7.8	8.6	mg/LSB
Sensitivity at X _{OUT} , Y _{OUT} , Z _{OUT}	±8 q, 10-bit resolution	58	64	71	LSB/q
Scale Factor at Xout, Yout, Zout	±8 q, 10-bit resolution	14.0	15.6	17.2	mg/LSB
Sensitivity at X _{OUT} , Y _{OUT} , Z _{OUT}	$\pm 16 q$, 10-bit resolution	29	32	36	LSB/q
Scale Factor at Xour, Your, Zour	$\pm 16 g$, 10-bit resolution	28.1	31.2	34.3	mg/LSB
Sensitivity Change Due to Temperature	±10 g, 10 bit resolution	20.1	±0.01	54.5	%/°C
0 q BIAS LEVEL	Each axis		20.01		707 C
0 g Output for Хоит, Yоит	Lacifaxis	-150	±40	+150	mg
0 g Output for Zout		-250	±80	+250	mg
0 q Offset vs. Temperature for x-, y-Axes		-230	±0.8	+230	mg/°C
0 g Offset vs. Temperature for z-Axis			±4.5		mg/°C
NOISE PERFORMANCE	+		14.5		ilig/ C
Noise (x-, y-Axes)	Data rate = $100 \text{ Hz for } \pm 2 q$, 10-bit or		<1.0		LSB rms
Noise (x-, y-Axes)	full resolution		<1.0		Lobinis
Noise (z-Axis)	Data rate = 100 Hz for $\pm 2 g$, 10-bit or		<1.5		LSB rms
OUTPUT DATA RATE AND BANDWIDTH	full resolution				
	User selectable			2200	
Measurement Rate ³		6.25		3200	Hz
SELF-TEST⁴	Data rate \geq 100 Hz, 2.0 V \leq V _S \leq 3.6 V				
Output Change in x-Axis		0.20		2.10	g
Output Change in y-Axis		-2.10		-0.20	g
Output Change in z-Axis		0.30		3.40	g
POWER SUPPLY					
Operating Voltage Range (V ₅)		2.0	2.5	3.6	V
Interface Voltage Range (VDD I/O)	V _S ≤ 2.5 V	1.7	1.8	V_S	V
	V _S ≥ 2.5 V	2.0	2.5	Vs	V
Supply Current	Data rate > 100 Hz		145		μΑ
	Data rate < 10 Hz		40		μΑ
Standby Mode Leakage Current			0.1	2	μΑ
Turn-On Time ⁵	Data rate = 3200 Hz		1.4		ms
TEMPERATURE					
Operating Temperature Range		-40		+85	°C
WEIGHT					
Device Weight			20		mg


What is in a sensor?

Example: Accelerometer

https://www.sparkfun.com/sparkfun-triple axis-accelerometer-breakout-adxl345.htm

Phenomenon

Acceleration to mechanical stress to electrical potential

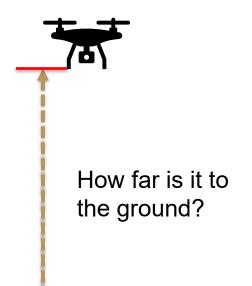
Measured

Sensors in ROS

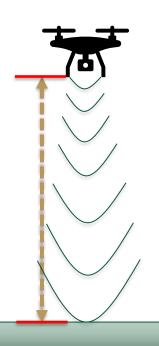
- Sensor Node Implementations
- Sensor Msgs
 - BatteryState
 - Image
 - LaserScan
 - PointCloud
 - Temperature

```
Image
This is a ROS message definition.
Source
 # This message contains an uncompressed image
 # (0, 0) is at top-Left corner of image
  std msgs/Header header # Header timestamp should be acquisition time of image
                              # Header frame id should be optical frame of camera
                              # origin of frame should be optical center of cameara
                              # +x should point to the right in the image
                              # +y should point down in the image
                              # +z should point into to plane of the image
                              # If the frame id here and the frame id of the CameraInfo
                              # message associated with the image conflict
                              # the behavior is undefined
  uint32 height
                              # image height, that is, number of rows
  uint32 width
                              # image width, that is, number of columns
  # The Legal values for encoding are in file include/sensor msqs/image encodings.hpp
  # If you want to standardize a new string format, join
  # ros-users@lists.ros.org and send an email proposing a new encoding.
                       # Encoding of pixels -- channel meaning, ordering, size
  string encoding
                       # taken from the list of strings in include/sensor msgs/image encodings.hpp
  uint8 is bigendian # is this data bigendian?
  uint32 step
                       # Full row Length in bytes
  uint8[] data
                       # actual matrix data, size is (step * rows)
```

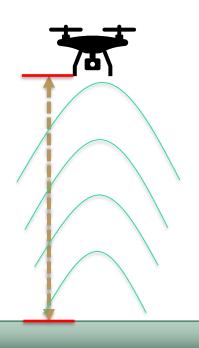
Types of Sensors

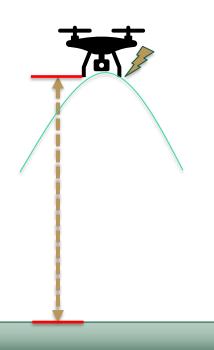

- Inward vs Outward
 - Proprioceptive: measures the system
 - Exteroceptive: measures the world
- Active vs Passive
 - Passive: receives energy from world
 - Active: sends energy into world

Types of Sensors


- Exteroceptive
 - Passive: Camera, Compass
 - Active: LiDAR, Radar, Ultrasonic
- Proprioceptive:
 - Passive: IMU, Encoder
 - Reference: Global Navigation Satellite System

How does our drone sense?


- Altitude
 - Lab 2 uses the pressure sensor
 - What else could we use?
 - GPS
 - Range finder
 - LiDAR
 - Radar
 - Ultrasonic



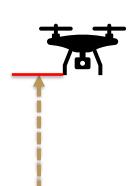
1. Emit pulse

- 1. Emit pulse
- 2. Pulse reflects (echo)

- 1. Emit pulse
- 2. Pulse reflects (echo)
- 3. Pulse received by sensor

What do we measure?

- 1. Emit pulse
- 2. Pulse reflects (echo)
- 3. Pulse received by sensor


Known:

- Time between pulse sent and received $t_{diff} = t_{start} t_{end}$
- Velocity of signal (v_p)

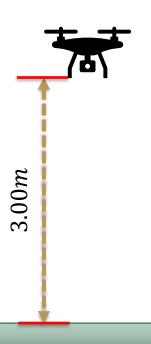
Solve:

$$d_{ground} = \frac{1}{2}d_{travel} = \frac{1}{2}(t_{diff} \cdot v_p)$$

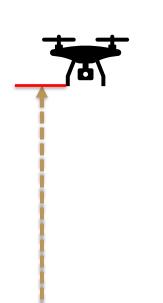
Solve:
$$d_{ground} = \frac{1}{2}d_{travel} = \frac{1}{2}(t_{diff} \cdot v_p)$$

Example: Ultrasonic

•
$$v_p = 343 \frac{m}{s}$$


•
$$t_{diff} = 17.5ms$$

•
$$d_{ground} = \frac{1}{2} \left(17.5ms \cdot \frac{343m}{s} \right)$$


•
$$d_{ground} = \frac{1}{2} \left(17.5ms \cdot \frac{1s}{1000ms} \cdot \frac{343m}{s} \right)$$

•
$$d_{ground} = \frac{1}{2} \left(\frac{17.5m \cdot 18.343m}{1000m \cdot 18} \right)$$

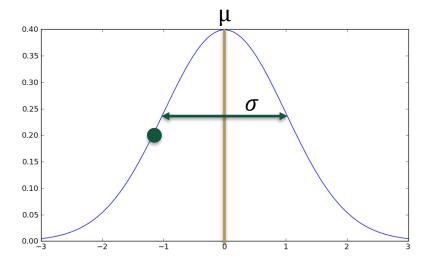
•
$$d_{ground} = 3.00m$$

- 1. Emit pulse
- 2. Pulse reflects (echo)
- 3. Pulse received by sensor
- 4. Signal is interpreted

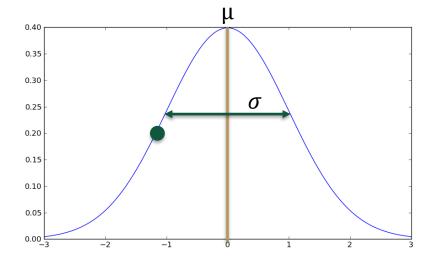
Solve:
$$d_{ground} = \frac{1}{2}d_{travel} = \frac{1}{2}(t_{diff} \cdot v_p)$$

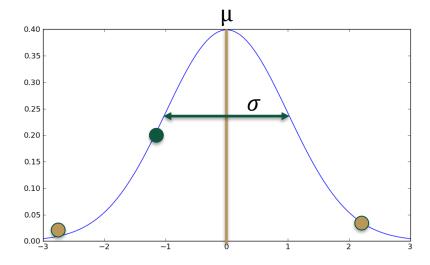
Example: Ultrasonic

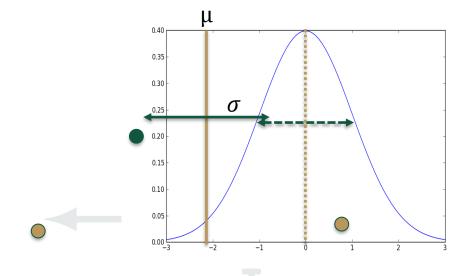
- $v_p = 343 \frac{m}{s}$
- $t_{diff} = 17.5ms$
- $d_{ground} = 3.00m$


Leaky Abstractions:

- Speed is $\frac{343m}{s}$ when:
 - 20°C, dry, sea level
- Ground is flat, level
- Drone is stationary relative to the ground


Each reading is a single sample


- Each reading is a single sample
- From a distribution


- Each reading is a single sample
- From a distribution

- Each reading is a single sample
- From a distribution
 - Can have outliers

- Each reading is a single sample
- From a distribution
 - Can have outliers
 - Can shift

Managing noise

- Calibration
- Filtering
- Fusion

Calibration

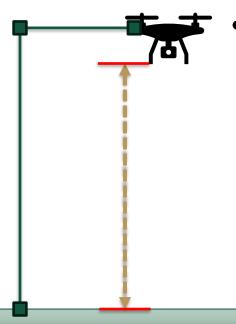
- Shift due to environmental assumption
- Need to adjust for new context
- To Calibrate:
 - Conduct new standardized tests
 - Recompute constants and errors
 - Redefine model parameters

How to calibrate?

Solve:
$$d_{ground} = \frac{1}{2}d_{travel} = \frac{1}{2}(t_{diff} \cdot v_p)$$

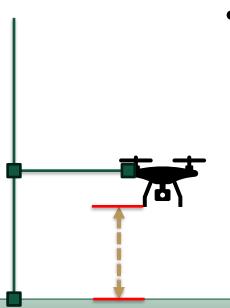
Example: Ultrasonic

- $v_p = 343 \frac{m}{s}$
- $t_{diff} = 17.5ms$
- $d_{ground} = 3.00m$

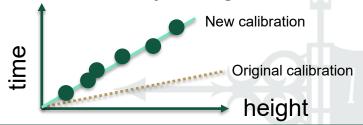

Known:

- Time
- Velocity?

Leaky Abstractions:


- Speed is $\frac{343m}{s}$ when:
 - 20°C, dry, sea level
- Ground is flat, level
- Drone is stationary relative to the ground

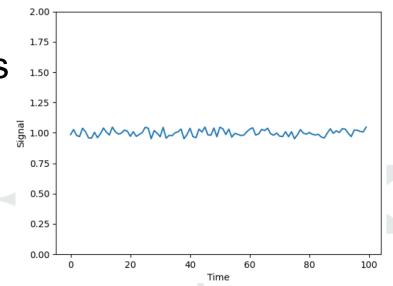
How do we find velocity?



- Conduct new standardized tests
 - Mount drone at fixed, known height
 - Measure time to compute velocity

How do we find velocity?

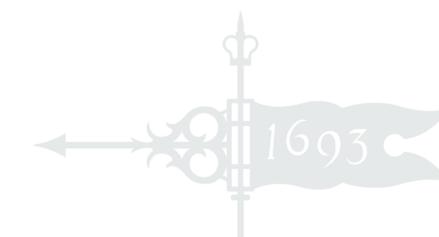
- Conduct new standardized tests
 - Mount drone at fixed, known height
 - Measure time to compute velocity
 - Repeat for many heights


Recalibrate based on parameters

Altitude	Temperature	Speed of Sound
Meters (m)	Celsius (°C)	m/s
0 (sea level)	21	344
3048 (10k feet)	-4.8	328
6096 (20k feet)	-24.6	316
9144 (30k feet)	-44.4	303

You may be able to look up parameters based on your context!

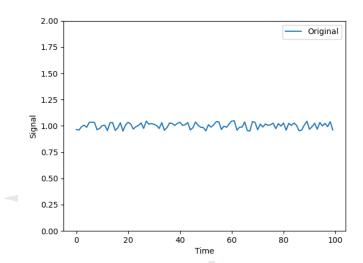
Filtering


- Sensors are noisy
 - Physical disturbances
 - Unaccounted for variables

Filtering

- Signal Processing
 - High Pass
 - Low Pass
 - Band Pass
- Most noise is a different frequency than the signal!

Moving Average or Window Filter

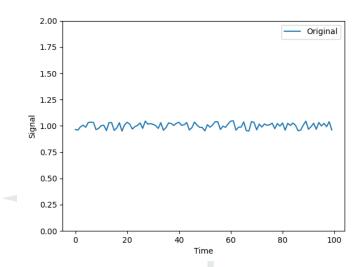


Moving Average or Window Filter

$$-y_t = \frac{x_t + \dots + x_{t-n}}{n}$$

x 1.01 0.99 1.03 1.00 0.98 0.99

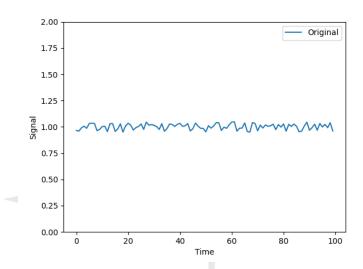
y



Moving Average or Window Filter

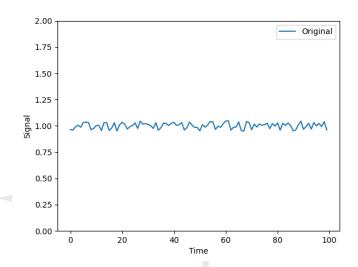
$$-y_t = \frac{x_t + \dots + x_{t-n}}{n}$$

x 1.01 0.99 1.03 1.00 0.98 0.99


y 1.01

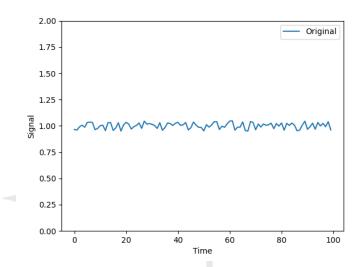
Moving Average or Window Filter

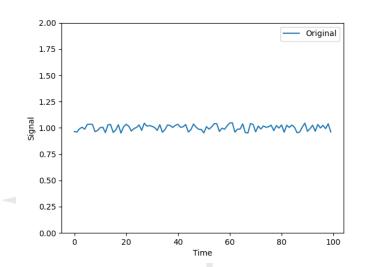
$$-y_t = \frac{x_t + \dots + x_{t-n}}{n}$$


y 1.01 1.00

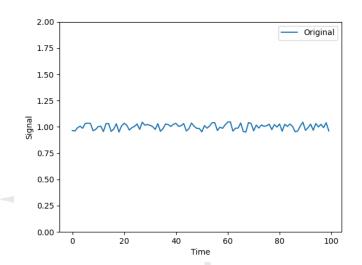
Moving Average or Window Filter

$$-y_t = \frac{x_t + \dots + x_{t-n}}{n}$$

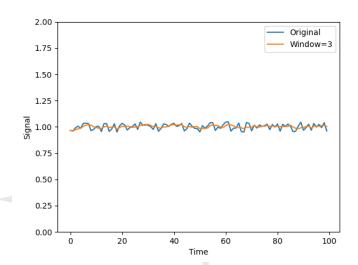

v 1.01 1.00 1.01


Moving Average or Window Filter

$$-y_t = \frac{x_t + \dots + x_{t-n}}{n}$$

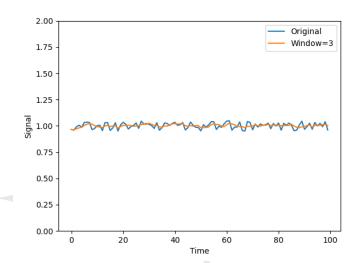

v 1.01 1.00 1.01

$$-y_t = \frac{x_t + \dots + x_{t-n}}{n}$$
1.01 0.99 1.03 1.00 0.98 0.99
1.01 1.00 1.01 1.01


$$-y_t = \frac{x_t + \dots + x_{t-n}}{n}$$
1.01 0.99 1.03 1.00 0.98 0.99
1.01 1.00 1.01 1.01

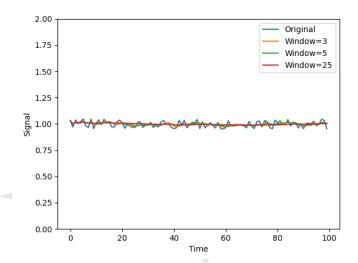
Moving Average or Window Filter

$$-y_t = \frac{x_t + \dots + x_{t-n}}{n}$$
1.01 0.99 1.03 1.00 0.98 0.99
1.01 1.00 1.01 1.01 0.99


γ

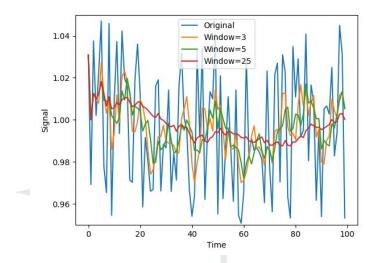
Moving Average or Window Filter

$$-y_t = \frac{x_t + \dots + x_{t-n}}{n}$$
1.01 0.99 1.03 1.00 0.98 0.99
1.01 1.00 1.01 1.01 0.99

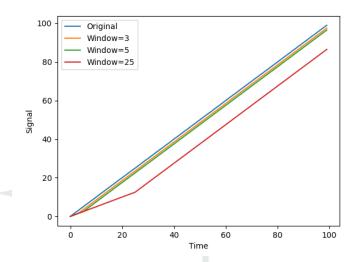

γ

Moving Average or Window Filter

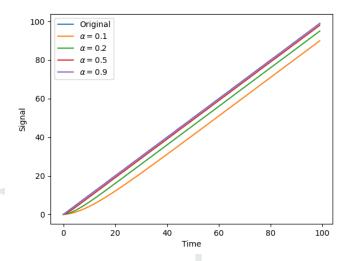
$$-y_t = \frac{x_t + \dots + x_{t-n}}{n}$$


Larger Window is More Smoothing

Moving Average or Window Filter

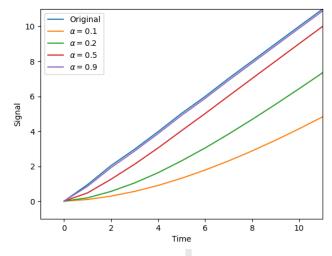

$$-y_t = \frac{x_t + \dots + x_{t-n}}{n}$$

Larger Window is More Smoothing


$$-y_t = \frac{x_t + \dots + x_{t-n}}{n}$$

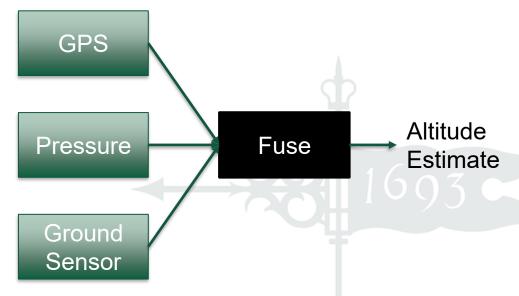
- Larger Window is More Smoothing
- Larger Window isMore Lag

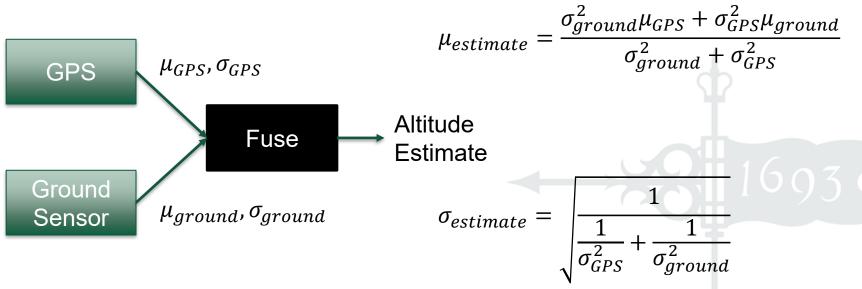
$$-y_t = \frac{x_t + \dots + x_{t-n}}{n}$$


- Generalize by weighting
 - Linear
 - Exponential decay
 - Important to tune!
 - α closer to 1, less filtering
 - α closer to 0, more filtering

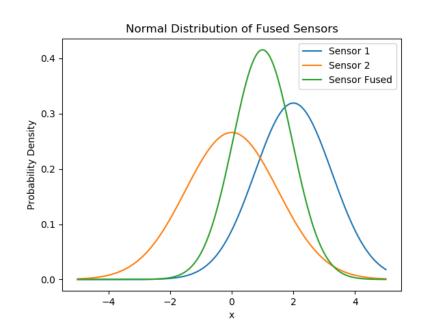
$$y_t = (1 - \alpha) \cdot y_{t-1} + \alpha \cdot x_t$$

$$-y_t = \frac{x_t + \dots + x_{t-n}}{n}$$


- Generalize by weighting
 - Linear
 - Exponential decay
 - Important to tune!
 - α closer to 1, less filtering
 - α closer to 0, more filtering

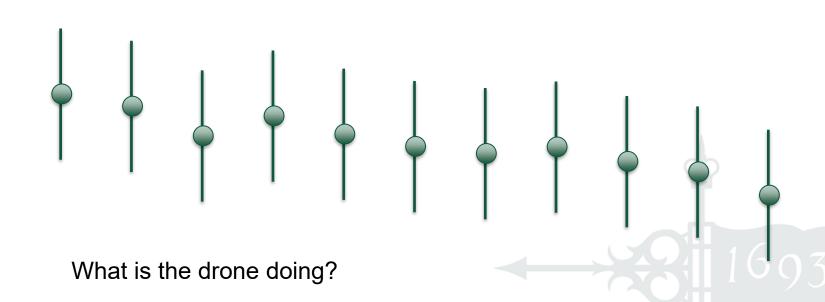

$$y_t = (1 - \alpha) \cdot y_{t-1} + \alpha \cdot x_t$$

- Use multiple sources of data:
 - More data means less noise
 - Different operating profiles
 - Redundancy
 - One sensor fails, operation continues
 - Robustness
 - Camera requires ambient light, LiDAR does not

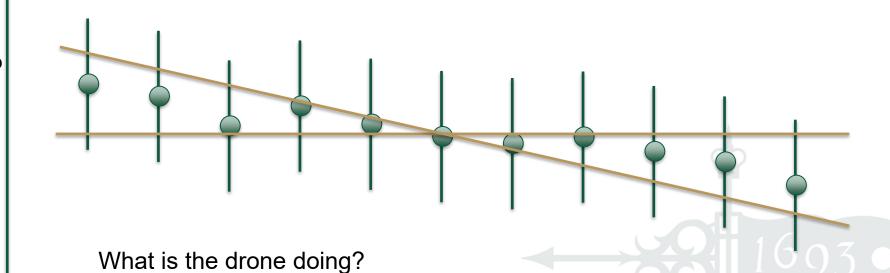

- How do we fuse?
 - Average
 - Weight by
 - uncertainty
 - reliability
 - conditions
 - Kalman Filter

Fusing Like Data: Weight by Uncertainty

Fusing Like Data: Weight by Uncertainty

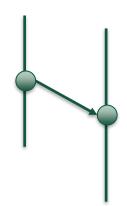


$$\mu_{estimate} = \frac{\sigma_{ground}^2 \mu_{GPS} + \sigma_{GPS}^2 \mu_{ground}}{\sigma_{ground}^2 + \sigma_{GPS}^2}$$


Ititude stima Mean is between estimates
Uncertainty is lower than either

$$\sigma_{estimate} = \sqrt{rac{1}{rac{1}{\sigma_{GPS}^2} + rac{1}{\sigma_{ground}^2}}}$$

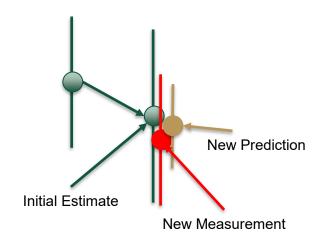
Time


Time

How can we disambiguate?

Sensor Fusion: Kalman

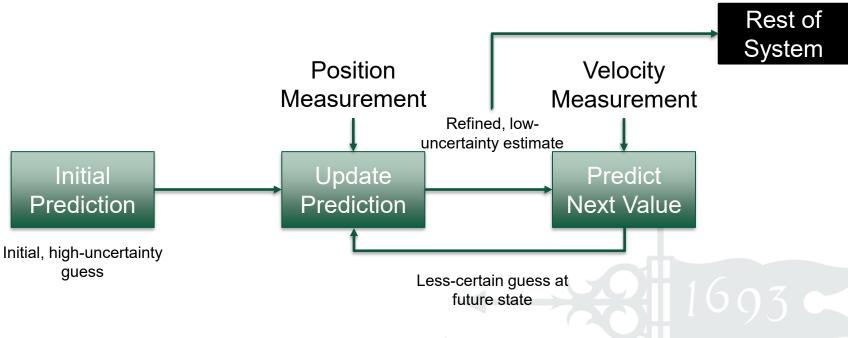
- Fusing disparate data: Kalman Filter
 - Canonical example:
 - Fuse position + velocity to estimate position


$$v = -5 \pm 1 \frac{m}{s}$$

Use velocity to predict new position

Errors increase due to compounding uncertainty

$$v = -5 \pm 1 \frac{m}{s}$$



Use velocity to predict new position

Errors increase due to compounding uncertainty

Refine estimate using next measured position – reduce uncertainty

Sensor Fusion: Kalman

You'll develop a version of this in Lab 4
See lab documents for equations

Sensors and Noise Handling

- Sensors capture robot and world state
- We often measure something other than what we want to know
- All sensors have noise, imperfections, uncertainty
 - Calibration
 - Filtering
 - Fusion