Sensors and Noise Management

CSCI 420-04 Robotics




World State




* Transduce energy into measurement
* Observe a Ig

— Are the units aligned?
* Provides a window into the world or robot




SPECIFICATIONS

Ta=25°C, Vs= 2.5V, Vopuo = 1.8 V; acceleration = 0 g, Cs = 1 pF tantalum, Cio = 0.1 uE unless otherwise noted.

Table 1. Specifications'

 Example: Accelerc

https://www.sparkfun.com/sparkfun-triple-

axis-accelerometer-breakout-adxI345.html

Parameter Test Conditions Min Typ Max Unit
SENSOR INPUT Each axis
Measurement Range User selectable +2,+4,48,+16 ]
Nonlinearity Percentage of full scale +0.5 %
Inter-Axis Alignment Error +0.1 Degrees
Cross-Axis Sensitivity? +1 %
OQUTPUT RESOLUTION Each axis
All g Ranges 10-bit resolution 10 Bits
+2 g Range Full resolution 10 Bits
+4 g Range Full resolution n Bits
+8 g Range Full resolution 12 Bits
+16 g Range Full resolution 13 Bits
SENSITIVITY Each axis
Sensitivity at Xour, Your, Zour +2 g, 10-bit or full resolution 232 256 286 LSB/g
Scale Factor at Xour, Your, Zour +2 g, 10-bit or full resolution 35 39 4.3 mg/LSB
Sensitivity at Xour, Your, Zour +4 g, 10-bit resolution 116 128 143 LSB/g
Scale Factor at Xour, Your, Zour +4 g, 10-bit resolution 7.0 7.8 8.6 mg/LSB
Sensitivity at Xour, Your, Zout +8 g, 10-bit resolution 58 64 ul LSB/g
Scale Factor at Xour, Your, Zour +8 g, 10-bit resolution 14.0 15.6 17.2 mg/LSB
Sensitivity at Xour, Your, Zour +16 g, 10-bit resolution 29 32 36 LSB/g
Scale Factor at Xour, Your, Zour +16 g, 10-bit resolution 28.1 31.2 343 mg/LSB
Sensitivity Change Due to Temperature +0.01 %/°C
0g BIAS LEVEL Each axis
0 g Output for Xour, Your =150 +40 +150 mg
0 g Output for Zour -250 +80 +250 mg
0 g Offset vs. Temperature for x-, y-Axes +038 mg/°C
0 g Offset vs. Temperature for z-Axis +4.5 mg/°C
NOISE PERFORMANCE
Noise (x-, y-Axes) Data rate = 100 Hz for +2 g, 10-bit or <1.0 LSB rms
full resolution
Noise (z-Axis) Data rate = 100 Hz for +2 g, 10-bit or <15 LSBrms
full resolution
OUTPUT DATA RATE AND BANDWIDTH User selectable
Measurement Rate® 6.25 3200 Hz
SELF-TEST* Datarate = 100Hz, 20V < Vs <36V
Output Change in x-Axis 0.20 2.10 g
Output Change in y-Axis -2.10 -0.20 g
Output Change in z-Axis 0.30 3.40 ]
POWER SUPPLY
Operating Voltage Range (Vs) 20 25 36 v
Interface Voltage Range (Voo o) Vs<25V 17 1.8 Vs v
Vsz=25V 20 25 Vs v
Supply Current Data rate > 100 Hz 145 A
Data rate < 10 Hz 40 HA
Standby Mode Leakage Current 0.1 2 pA
Turn-On Time® Data rate = 3200 Hz 14 ms
TEMPERATURE
Operating Temperature Range —40 +85 °C
WEIGHT
Device Weight 20
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 Example: Accelerometer

https://www.sparkfun.com/sparkfun-triple-
axis-accelerometer-breakout-adxI345.html
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« Sensor Msgs

ensors in ROS

» Sensor Node Implementations

BatteryState

mage

_aserScan

PointCloud

Temperature

Image
This is a ROS message definition.

Source

# This message contains an uncompressed image

# (9, 0) is at top-left corner of image

std_msgs/Header header # Header timestamp should be acquisition time of

nage
frame_id should be optical frame of camera

# Header
origin of frame should be optical center of cameara

#
# +x should point to the right
#

the image
+

) should point down in the image

S

+z should point into to plane of the image

'f the frame_id here and the frame_id of the CameraInfo

message associated with the image conflict

% w o®

the behavior is undefined

uint32 height
uint32 width

%

image height, that is, number of rows

*

image width, that is, number of columns

# The Legal values for encoding are in file include/sensor_msgs/image_encodings.h

=
©

want to standard

a new string format, join

users@lists.ros.org and send an email proposing a new encoding.

string encoding # Encoding of pixels -- channel meaning, ordering,
# taken from the List of strings in include/sensor_msgs/image_encodings.hpp
uint8 is_bigendian # is this data bigendian?
uint32 step # Full row Len in bytes
uint8[] data # actual matrix data, size is (step * rows)
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* Inward vs Outward
— Proprioceptive: measures the system
— Exteroceptive: measures the world

* Active vs Passive

— Passive: receives energy from world
— Active: sends energy into world




» Exteroceptive
— Passive: Camera, Compass
— Active: LIDAR, Radar, Ultrasonic
* Proprioceptive:
— Passive: IMU, Encoder
— Reference: Global Navigation Satellite System
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o Altitude

— Lab 2 uses the pressure sensor

— What else could we use?
« GPS

— LiDAR
— Radar
— Ultrasonic

10



How do range finders work?

E

How far is it to
the ground?

|<_____________

T round




How do range finders work?

J 1. Emit pulse
i
i
i




How do range finders work?

1. Emit pulse

‘j 2. Pulse reflects (echo)
i
/ﬂ
|
Vo
|
I
i




_m 1. Emit pulse
‘ 2. Pulse reflects (echo)

3. Pulse received by sensor

What do we measure?




How do range finders work?

1. Emit pulse
2. Pulse reflects (echo)
3. Pulse received by sensor

E

Known:
« Time between pulse sent and received tyirr = tsrart — tena

* Velocity of signal (v)

Solve:

1 1
dground = Edtravel =5 (tdiff ' vp)

|<_____________

T round




How do range finders work?

. 1 1
Solve: dground = Edtravel =3 (tdiff ' vp)

E

Example: Ultrasonic
* v, =343
* tdiff = 17.5ms
1
* dground = 5(17.5ms -

1
* dground = 5 (17.5ms -

343m)

1s 343m)

1000ms S
. 4 _ 1(17.511\3-&-343111)
ground = 5\ 1000MsNs

dgrouna = 3.00m

|<_____________

—*ﬁw—




How do range finders work?

1. Emit pulse
2. Pulse reflects (echo)
: 3. Pulse received by sensor
! 4. Signalis interpreted
E |
o |
|
i
i
l
N

T round




How do range finders work?

. 1 1
Solve: dground = Edtravel =3 (tdiff ' vp)

E

Example: Ultrasonic Leaky Abstractions:

* v, =343 « Speed is 34:’" when:

* tgirf = 17.5ms « 20°C, dry, sea level
* dgrouna = 3.00m * Ground is flat, level

« Drone is stationary
relative to the ground

|<_____________

T round




Sensors can be inaccurate

* Each reading is a single sample




* Each reading is a single sample
L

 From a distribution /\
- [ 1o




* Each reading is a single sample
L

 From a distribution /\
- [ 1o




* Each reading is a single sample

* From a distribution
— Can have outliers

m

/1y




* Each reading is a single sample

* From a distribution

— Can have outliers
— Can shift °.




Managing noise

e Calibration
* Filtering
 Fusion




» Shift due to environmental assumption
* Need to adjust

 To Calibrate:

— Conduct new standardized tests
— Recompute constants and errors
— Redefine model parameters

25



How to calibrate?

_ 1 1
Solve: dground = Edtravel =3 (tdiff ' vp)

E

Example: Ultrasonic Leaky Abstractions:
: + v, =343~ « Speed is 3453’" when:
: * tgif = 17.5ms « 20°C, dry, sea level
: dgrouna = 3.00m * Ground is flat, level
! « Drone is stationary
: Known: relative to the ground
: « Time
: . Velocity?
——

T round




How do we find velocity?

O  Conduct new standardized tests

— Mount drone at fixed, known height
— Measure time to compute velocity




How do we find velocity?

* Conduct new standardized tests
— Mount drone at fixed, known height
— Measure time to compute velocity
— Repeat for many heights

. New calibration

' .......... Original calibration

P o

time




Altitude Temperature Speed of Sound

Meters (m) Celsius (°C) m/s
0 (sea level) 21 344
3048 (10k feet) -4.8 328
6096 (20k feet) -24.6 316
9144 (30k feet) -44 4 303

You may be able to look up parameters based on your context!




» Sensors are noisy

— Physical disturbances

1.75 4

— Unaccounted for variables ..

1254

1.00 WWMM\MM

Signal

0.75 4

0.50 4

0.25 4

0.00

0 20 40 60 80 100




 Signal Processing
— High Pass
— Low Pass
— Band Pass

* Most noise is a different frequency than
the signal!




Low Pass Filter: Smoothing

* Moving Average or Window Filter




Low Pass Filter: Smoothing

* Moving Average or Window Filter

xt+---+xt_n

— j— 2.00
t —— Original
1.75
1.50 1

n

x 101 099 1.03 1.00 0.98 0.99 £ 1001 AN A AN

y




Low Pass Filter: Smoothing

* Moving Average or Window Filter

xt+---+xt_n

— j— 2.00
t —— Original
1.75
1.50 1

n

x 11011 099 1.03 1.00 0.98 0.99 £ 1001 AN A AN

y  1.01




Low Pass Filter: Smoothing

* Moving Average or Window Filter

xt+---+xt_n

— j— 2.00
t —— Original
1.75
1.50 1

n

x 11.01 099 1.03 1.00 0.98 0.99 £ 1001 AN A AN

y 1.01 1.00




Low Pass Filter: Smoothing

* Moving Average or Window Filter

xt+---+xt_n

— j— 2.00
t —— Original
1.75
1.50 1

n

x 11.01 099 1.03| 1.00 0.98 0.99 £ 1001 AN A AN

y 1.01 1.00 1.01




Low Pass Filter: Smoothing

* Moving Average or Window Filter

xt+---+xt_n

— j— 2.00
t —— Original
1.75
1.50 1

n

x 11.01 099 1.03| 1.00 0.98 0.99 £ 1001 AN A AN

y 1.01 1.00 1.01




Low Pass Filter: Smoothing

* Moving Average or Window Filter

xt+---+xt_n

— j— 2.00
t —— Original
1.75
1.50

n

x 101 1099 1.03 1.00] 0.98 0.99 £ 1001 AN A AN

y 101 1.00 1.01 1.01




Low Pass Filter: Smoothing

* Moving Average or Window Filter

xt+---+xt_n

— j— 2.00
t —— Original
1.75
1.50

n

x 101 099 [1.03 1.00 0.98| 0.99 £ 1001 AN A AN

y 101 100 101 1.01 1.00




Low Pass Filter: Smoothing

* Moving Average or Window Filter

xt+---+xt_n

— j— 2.00
t —— Original

n 175 4 —— Window=3

x 101 099 1.03 [1.00 0.98 0.99

y 101 100 101 1.01 1.00 0.99




Low Pass Filter: Smoothing

* Moving Average or Window Filter

xt+---+xt_n

— j— 2.00
t —— Original

n 175 4 —— Window=3

x 101 099 1.03 [1.00 0.98 0.99

y 101 100 101 1.01 1.00 0.99




* Moving Average or Window Filter

— xt+...+xt_n 2.00
B yt o . — Original
Window=3
" "~ Window=s
— Window=25

— Larger Window is




Low Pass Filter: Smoothing

* Moving Average or Window Filter

xt+---+xt_n

— Yt =

— Larger Window is
More Smoothing

n

E 1.00 A ‘M%¢\q

h

| ﬂ"f—é—y

=3

=25




* Moving Average or Window Filter

xt+---+xt_n

—Vt =
— Larger Window is
More Smoothing

— Larger Window is
More Lag

n




* Moving Average or Window Filter

xt+---+xt_n

—Vt = -
» Generalize by weighting
— Linear

— Exponential decay

— Important to tune!
* a closer to 1, less filtering
* «a closer to 0, more filtering ye=1=a) -y ta-x

45



https://en.wikipedia.org/wiki/Exponential_smoothing

* Moving Average or Window Filter

xt+---+xt_n

—Vt = -
» Generalize by weighting
— Linear

— Exponential decay

— Important to tune!
* a closer to 1, less filtering
* «a closer to 0, more filtering ye=1=a) -y ta-x

46



https://en.wikipedia.org/wiki/Exponential_smoothing

» Use multiple sources of data:
— More data means less noise

— Different operating profiles
* Redundancy
— One sensor fails, operation continues

* Robustness
— Camera requires ambient light, LIDAR does not

47



* How do we fuse?

— Average
* Weight by
— uncertainty
— reliability Altitude
— conditions Estimate

— Kalman Filter




* Fusing Like Data: Weight by Uncertainty

2 2
_ OgroundHcps + 0Gpshground

Hestimate = o2 + g2
Ueps) Caps ground GPS
Altitude
Estimate
1
,ugroundi Gground Oestimate = 1 1
2 T3
o o
\J GPS ground

49



Probability Density

Sensor Fusion

* Fusing Like Data: Weight by Uncertainty

o
=

=
w

o
]

=]
=

o
o

Normal Distribution of Fused Sensors

Uestimate =

2

2
Ogrounddeps T 0Gpshground

2 2
Jground + OGps

Ititud Uncertainty is lower than either
stima

Oestimate —

1
1 1
2 + 2
\J Ogps O-ground




Sensor Fusion

Altitude Reading
©
©
©

What is the drone doing?

Time

51




Sensor Fusion

(@)] \\

= - Q\

o

5 G\s\i\a\ﬁ

g — 9% ¢ |
= T —

What is the drone doing?
How can we disambiguate?

Time

52




* Fusing disparate data: Kalman Filter

— Canonical example:
* Fuse position + velocity to estimate position




Sensor Fusion

Altitude Reading

Use velocity to predict new position
Errors increase due to compounding uncertainty

Time

54




New Prediction

Initial Estimate

Altitude Reading

New Measurement

Use velocity to predict new position
Errors increase due to compounding uncertainty
Refine estimate using next measured position — reduce uncertainty

A 4

Time

55




Sensor Fusion: Kalman

i Restof
System

Position Velocity
Measurement Measurement
1 Refined, low-
uncertainty estimate 1

| Prediction

Initial, high-uncertainty
guess

Less-certain guess at
future state

You'll develop a version of this in Lab 4
See lab documents for equations




* Sensors capture robot and world state

* We often measure something other than what
we want to know

 All sensors have noise, imperfections,
uncertainty
— Calibration
— Filtering
— Fusion

57
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