Planning

CSCI 420-04 Robotics




How do we choose the action?
“

World State :




* Given: * Find:
— World Space W — Path from gs to qg
— Obstacle Areas O — Inside of W
— Robot State R — Avoiding O
— Start gs — (with efficiency)

— End qg




Free Space in World W
Obstacle




Model Planning Families

 Reactive
 Model-based

assumptions about sensor types
and the available world models




Motion Planning Families

* Reactive
— Online
— Fast
— Non-optimal




gs

Obstacle

« Robot modeled as a small circle
— Overapproximate shape

— Underapproximate ability ®




gs

Obstacle

* Bug can:
— Know which direction goal is
— Feel when it hits an object

q9
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gs

* Bug can:
— Know which direction goal is

— Feel when it hits an object s




* Bug can:
— Know which direction goal is

— Feel when it hits an object s
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* Bug can:
— Know which direction goal is

— Feel when it hits an object
* When it hits an object, it follows until it isn’t blocked

q9
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Obstacle

* Bug can:
— Know which direction goal is

— Feel when it hits an object
When it hits an object, it follows until it isn’t blocked

q9
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When does Bug 1 Fail?

qgs
* Bug can: ®
— Know which direction goal is qg
— Feel when it hits an object
* When it hits an object, it follows until it isn’t blocked
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gs

* Bug can: O
— Know which direction goal is

— Feel when it hits an object
When it hits an object, it follows until it isn’t blocked

q9
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* Bug can: @
— Know which direction goal is

— Feel when it hits an object
When it hits an object, it follows until it isn’t blocked




When does Bug 1 Fail?

It can get stuck repeating the mistakes!

* Bug can: el
— Know which direction goal is

— Feel when it hits an object
* When it hits an object, it follows until it isn’t blocked
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* Bug can: O
— Know which direction goal is

— Feel when it hits an object
» Goes all the way around the object to map it
« Backtracks to the nearest location before going to goal

q9
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* Bug can:
— Know which direction goal is

— Feel when it hits an object
» Goes all the way around the object to map it
« Backtracks to the nearest location before going to goal
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gs

* Bug can:
— Know which direction goal is

— Feel when it hits an object

Goes all the way around the object to map it
Backtracks to the nearest location before going to goal
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Model Planning Families

* Reactive
— Bug family
— Dynamic Window

 Model-based




* Robot can make short-horizon plans

* Plans depend on the robot’'s dynamics
— At a stop, it will take time to accelerate
— At high speeds, the robot can’t turn sharply




\ * |dentify feasible space
T  Generate list of paths
* Pick best path

q9




* |dentify feasible space
» Generate list of paths
* Pick best path

q9




* |dentify feasible space
» Generate list of paths

* Pick best path
— Considering Obstacles

q9

gs




* Reactive
— Bug family
— Dynamic Window

— Predictive model of actions in known world
— Simplify world model, search for solution
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* Given:
— Known location of polygonal obstacles

« Compute:
— All edges through free space between all vertices

* Find:
— Shortest path







Path Planning: Visibility

i ‘ Q9
raph search!
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Path Planning: Visibility

O
When does it struggle? ag
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Path Plannlng Visibility




Path Planning: Visibility

o R Oy

Good world approximation is expensive qag
Poor approximation leads to inefficient solutions




* Reactive

— Bug family

— Dynamic Window
* Model-based

— Visibility










Path Planning: Grid




Path Planning: Grid

I R R
Discretizes Space

Checks Occupancy -
l Grid Search for Path l-
I N




* What can go wrong?

— Depends on:
« Shapes encountered
« Resolution of the grid




Path Planning: Grid

With one column removed,
this is now unsolvable




Grid With Refinement




Grid With Refinement

I R
rSubdivide cells around

lobstacles until solvable
I S




Model Planning Families

 Reactive

— Bug family

— Dynamic Window
 Model-based

— Visibility

— Grid

— Probabilistic




O
gs
O
O
O
Qg
Select random points Q
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q9

Connect within short distance

45



q9

Sample more until connected



Path is not optimal.
How could we optimize?




* Reactive
— Local knowledge/feedback
— Fast, but can get stuck if not careful

 Model
— Big picture
— Can be efficient, but takes time
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