Planning

CSCI 420-04 Robotics

How do we choose the action?
“

World State :

* Given: * Find:
— World Space W — Path from gs to qg
— Obstacle Areas O — Inside of W
— Robot State R — Avoiding O
— Start gs — (with efficiency)

— End qg

Free Space in World W
Obstacle

Model Planning Families

 Reactive
 Model-based

assumptions about sensor types
and the available world models

Motion Planning Families

* Reactive
— Online
— Fast
— Non-optimal

gs

Obstacle

« Robot modeled as a small circle
— Overapproximate shape

— Underapproximate ability ®

gs

Obstacle

* Bug can:
— Know which direction goal is
— Feel when it hits an object

q9

10

gs

* Bug can:
— Know which direction goal is

— Feel when it hits an object s

* Bug can:
— Know which direction goal is

— Feel when it hits an object s

Obstacle

.
.
.
G
.
.
G
.
.
.
.
.
.
.
G
‘e
.

‘e

* Bug can:
— Know which direction goal is

— Feel when it hits an object
* When it hits an object, it follows until it isn’t blocked

q9

13

Obstacle

* Bug can:
— Know which direction goal is

— Feel when it hits an object
When it hits an object, it follows until it isn’t blocked

q9

14

When does Bug 1 Fail?

qgs
* Bug can: ®
— Know which direction goal is qg
— Feel when it hits an object
* When it hits an object, it follows until it isn’t blocked
15

gs

* Bug can: O
— Know which direction goal is

— Feel when it hits an object
When it hits an object, it follows until it isn’t blocked

q9

16

* Bug can: @
— Know which direction goal is

— Feel when it hits an object
When it hits an object, it follows until it isn’t blocked

When does Bug 1 Fail?

It can get stuck repeating the mistakes!

* Bug can: el
— Know which direction goal is

— Feel when it hits an object
* When it hits an object, it follows until it isn’t blocked

gs

A 4

. N
* Bug can: O
— Know which direction goal is

— Feel when it hits an object
» Goes all the way around the object to map it
« Backtracks to the nearest location before going to goal

q9

19

gs

A 4

4

* Bug can:
— Know which direction goal is

— Feel when it hits an object
» Goes all the way around the object to map it
« Backtracks to the nearest location before going to goal

20

gs

* Bug can:
— Know which direction goal is

— Feel when it hits an object

Goes all the way around the object to map it
Backtracks to the nearest location before going to goal

21

Model Planning Families

* Reactive
— Bug family
— Dynamic Window

 Model-based

* Robot can make short-horizon plans

* Plans depend on the robot’'s dynamics
— At a stop, it will take time to accelerate
— At high speeds, the robot can’t turn sharply

\ * |dentify feasible space
T Generate list of paths
* Pick best path

q9

* |dentify feasible space
» Generate list of paths
* Pick best path

q9

* |dentify feasible space
» Generate list of paths

* Pick best path
— Considering Obstacles

q9

gs

* Reactive
— Bug family
— Dynamic Window

— Predictive model of actions in known world
— Simplify world model, search for solution

27

* Given:
— Known location of polygonal obstacles

« Compute:
— All edges through free space between all vertices

* Find:
— Shortest path

Path Planning: Visibility

i ‘ Q9
raph search!

30
GRS

Path Planning: Visibility

O
When does it struggle? ag

31

Path Plannlng Visibility

Path Planning: Visibility

o R Oy

Good world approximation is expensive qag
Poor approximation leads to inefficient solutions

* Reactive

— Bug family

— Dynamic Window
* Model-based

— Visibility

Path Planning: Grid

Path Planning: Grid

I R R
Discretizes Space

Checks Occupancy -
l Grid Search for Path l-
I N

* What can go wrong?

— Depends on:
« Shapes encountered
« Resolution of the grid

Path Planning: Grid

With one column removed,
this is now unsolvable

Grid With Refinement

Grid With Refinement

I R
rSubdivide cells around

lobstacles until solvable
I S

Model Planning Families

 Reactive

— Bug family

— Dynamic Window
 Model-based

— Visibility

— Grid

— Probabilistic

O
gs
O
O
O
Qg
Select random points Q

44

q9

Connect within short distance

45

q9

Sample more until connected

Path is not optimal.
How could we optimize?

* Reactive
— Local knowledge/feedback
— Fast, but can get stuck if not careful

 Model
— Big picture
— Can be efficient, but takes time

	Slide 3: Planning
	Slide 4: How do we choose the action?
	Slide 5: 2D Motion Planning
	Slide 6: Motion Planning
	Slide 7: Model Planning Families
	Slide 8: Motion Planning Families
	Slide 9: Reactive: Bug Algorithms
	Slide 10: Reactive: Bug 1
	Slide 11: Reactive: Bug 1
	Slide 12: Reactive: Bug 1
	Slide 13: Reactive: Bug 1
	Slide 14: Reactive: Bug 1
	Slide 15: When does Bug 1 Fail?
	Slide 16: When does Bug 1 Fail?
	Slide 17: When does Bug 1 Fail?
	Slide 18: When does Bug 1 Fail?
	Slide 19: Reaction with memory: Bug 2
	Slide 20: Reaction with memory: Bug 2
	Slide 21: Reaction with memory: Bug 2
	Slide 22: Model Planning Families
	Slide 23: Dynamic Window
	Slide 24: Dynamic Windows
	Slide 25: Dynamic Windows
	Slide 26: Dynamic Windows
	Slide 27: Model Planning Families
	Slide 28: Path Planning: Visibility
	Slide 29: Path Planning: Visibility
	Slide 30: Path Planning: Visibility
	Slide 31: Path Planning: Visibility
	Slide 32: Path Planning: Visibility
	Slide 33: Path Planning: Visibility
	Slide 34: Model Planning Families
	Slide 35: Path Planning: Grid
	Slide 36: Path Planning: Grid
	Slide 37: Path Planning: Grid
	Slide 38: Path Planning: Grid
	Slide 39: Path Planning: Grid
	Slide 40: Path Planning: Grid
	Slide 41: Grid With Refinement
	Slide 42: Grid With Refinement
	Slide 43: Model Planning Families
	Slide 44: Path Planning: Probabilistic
	Slide 45: Path Planning: Probabilistic
	Slide 46: Path Planning: Probabilistic
	Slide 47: Path Planning: Probabilistic
	Slide 48: Path Planning

