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How do we choose the action?
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2D Motion Planning

• Given:

– World Space W

– Obstacle Areas O

– Robot State R

– Start qs

– End qg

• Find:

– Path from qs to qg

– Inside of W

– Avoiding O

– (with efficiency)
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Motion Planning

6

qs

qg

Free Space in World W

Obstacle

Path



Model Planning Families

• Reactive

• Model-based
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The right choice depends on the 

assumptions about sensor types 

and the available world models



Motion Planning Families

• Reactive

– Online

– Fast

– Non-optimal
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Reactive: Bug Algorithms

• Robot modeled as a small circle
– Overapproximate shape

– Underapproximate ability
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Reactive: Bug 1

• Bug can:
– Know which direction goal is

– Feel when it hits an object
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Reactive: Bug 1

• Bug can:
– Know which direction goal is

– Feel when it hits an object
• When it hits an object, it follows until it isn’t blocked
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When does Bug 1 Fail?
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When does Bug 1 Fail?
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• Bug can:
– Know which direction goal is

– Feel when it hits an object
• When it hits an object, it follows until it isn’t blocked

qs

qg

Bug 1 has no memory!

It can get stuck repeating the mistakes!



Reaction with memory: Bug 2
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• Bug can:
– Know which direction goal is

– Feel when it hits an object
• Goes all the way around the object to map it

• Backtracks to the nearest location before going to goal
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Reaction with memory: Bug 2
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Reaction with memory: Bug 2
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• Bug can:
– Know which direction goal is

– Feel when it hits an object
• Goes all the way around the object to map it

• Backtracks to the nearest location before going to goal
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qg



Model Planning Families

• Reactive

– Bug family

– Dynamic Window

• Model-based
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Dynamic Window

• Robot can make short-horizon plans

• Plans depend on the robot’s dynamics

– At a stop, it will take time to accelerate

– At high speeds, the robot can’t turn sharply
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Dynamic Windows

• Identify feasible space

• Generate list of paths

• Pick best path
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Dynamic Windows

• Identify feasible space

• Generate list of paths

• Pick best path
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Dynamic Windows

• Identify feasible space

• Generate list of paths

• Pick best path

– Considering Obstacles
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Model Planning Families

• Reactive

– Bug family

– Dynamic Window

• Model-based

– Predictive model of actions in known world

– Simplify world model, search for solution
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Path Planning: Visibility

• Given:

– Known location of polygonal obstacles

• Compute:

– All edges through free space between all vertices

• Find:

– Shortest path
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Path Planning: Visibility
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Path Planning: Visibility
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qs

qg
Graph search!



Path Planning: Visibility

When does it struggle?
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Path Planning: Visibility
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Path Planning: Visibility

Good world approximation is expensive
Poor approximation leads to inefficient solutions
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Model Planning Families

• Reactive

– Bug family

– Dynamic Window

• Model-based

– Visibility

– Grid
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Path Planning: Grid
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Path Planning: Grid
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Path Planning: Grid
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Path Planning: Grid
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qs

qg
Discretizes Space

Checks Occupancy

Grid Search for Path



Path Planning: Grid

• What can go wrong?

– Depends on:

• Shapes encountered

• Resolution of the grid
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Path Planning: Grid
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qs

qgWith one column removed,

this is now unsolvable



Grid With Refinement
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Grid With Refinement

42

qs

qgSubdivide cells around 

obstacles until solvable



Model Planning Families

• Reactive

– Bug family

– Dynamic Window

• Model-based

– Visibility

– Grid

– Probabilistic
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Path Planning: Probabilistic
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qs

qg

Select random points



Path Planning: Probabilistic
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qs

qg

Connect within short distance



Path Planning: Probabilistic
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qs

qg

Sample more until connected



Path Planning: Probabilistic
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qs

qg

Sample more until connected
Path is not optimal.

How could we optimize?



Path Planning

• Reactive

– Local knowledge/feedback

– Fast, but can get stuck if not careful

• Model

– Big picture

– Can be efficient, but takes time
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