
Planning

CSCI 420-04 Robotics



How do we choose the action?

4

Compute

Machine 

State

Physical 

World State

Sense Act
Perception

Planning



2D Motion Planning

• Given:

– World Space W

– Obstacle Areas O

– Robot State R

– Start qs

– End qg

• Find:

– Path from qs to qg

– Inside of W

– Avoiding O

– (with efficiency)

5



Motion Planning

6

qs

qg

Free Space in World W

Obstacle

Path



Model Planning Families

• Reactive

• Model-based

7

The right choice depends on the 

assumptions about sensor types 

and the available world models



Motion Planning Families

• Reactive

– Online

– Fast

– Non-optimal

8



Reactive: Bug Algorithms

• Robot modeled as a small circle
– Overapproximate shape

– Underapproximate ability

9

qs
Obstacle

qg



Reactive: Bug 1

• Bug can:
– Know which direction goal is

– Feel when it hits an object

10

qs
Obstacle

qg



Reactive: Bug 1

• Bug can:
– Know which direction goal is

– Feel when it hits an object

11

qs
Obstacle

qg



Reactive: Bug 1

• Bug can:
– Know which direction goal is

– Feel when it hits an object

12

qs
Obstacle

qg



Reactive: Bug 1

• Bug can:
– Know which direction goal is

– Feel when it hits an object
• When it hits an object, it follows until it isn’t blocked

13

qs
Obstacle

qg



Reactive: Bug 1

• Bug can:
– Know which direction goal is

– Feel when it hits an object
• When it hits an object, it follows until it isn’t blocked

14

qs
Obstacle

qg



When does Bug 1 Fail?

15

• Bug can:
– Know which direction goal is

– Feel when it hits an object
• When it hits an object, it follows until it isn’t blocked

qs

qg



When does Bug 1 Fail?

16

• Bug can:
– Know which direction goal is

– Feel when it hits an object
• When it hits an object, it follows until it isn’t blocked

qs

qg



When does Bug 1 Fail?

17

• Bug can:
– Know which direction goal is

– Feel when it hits an object
• When it hits an object, it follows until it isn’t blocked

qs

qg



When does Bug 1 Fail?

18

• Bug can:
– Know which direction goal is

– Feel when it hits an object
• When it hits an object, it follows until it isn’t blocked

qs

qg

Bug 1 has no memory!

It can get stuck repeating the mistakes!



Reaction with memory: Bug 2

19

• Bug can:
– Know which direction goal is

– Feel when it hits an object
• Goes all the way around the object to map it

• Backtracks to the nearest location before going to goal

qs

qg



Reaction with memory: Bug 2

20

• Bug can:
– Know which direction goal is

– Feel when it hits an object
• Goes all the way around the object to map it

• Backtracks to the nearest location before going to goal

qs

qg



Reaction with memory: Bug 2

21

• Bug can:
– Know which direction goal is

– Feel when it hits an object
• Goes all the way around the object to map it

• Backtracks to the nearest location before going to goal

qs

qg



Model Planning Families

• Reactive

– Bug family

– Dynamic Window

• Model-based

22



Dynamic Window

• Robot can make short-horizon plans

• Plans depend on the robot’s dynamics

– At a stop, it will take time to accelerate

– At high speeds, the robot can’t turn sharply

23



Dynamic Windows

• Identify feasible space

• Generate list of paths

• Pick best path

24

qs

qg



Dynamic Windows

• Identify feasible space

• Generate list of paths

• Pick best path

25

qs

qg



Dynamic Windows

• Identify feasible space

• Generate list of paths

• Pick best path

– Considering Obstacles

26

qs

qg



Model Planning Families

• Reactive

– Bug family

– Dynamic Window

• Model-based

– Predictive model of actions in known world

– Simplify world model, search for solution

27



Path Planning: Visibility

• Given:

– Known location of polygonal obstacles

• Compute:

– All edges through free space between all vertices

• Find:

– Shortest path

28



Path Planning: Visibility

29

qs

qg



Path Planning: Visibility

30

qs

qg
Graph search!



Path Planning: Visibility

When does it struggle?

31

qs

qg



Path Planning: Visibility

32

qs

qg



Path Planning: Visibility

Good world approximation is expensive
Poor approximation leads to inefficient solutions

33

qs

qg



Model Planning Families

• Reactive

– Bug family

– Dynamic Window

• Model-based

– Visibility

– Grid

34



Path Planning: Grid

35

qs

qg



Path Planning: Grid

36

qs

qg



Path Planning: Grid

37

qs

qg



Path Planning: Grid

38

qs

qg
Discretizes Space

Checks Occupancy

Grid Search for Path



Path Planning: Grid

• What can go wrong?

– Depends on:

• Shapes encountered

• Resolution of the grid

39



Path Planning: Grid

40

qs

qgWith one column removed,

this is now unsolvable



Grid With Refinement

41

qs

qg



Grid With Refinement

42

qs

qgSubdivide cells around 

obstacles until solvable



Model Planning Families

• Reactive

– Bug family

– Dynamic Window

• Model-based

– Visibility

– Grid

– Probabilistic

43



Path Planning: Probabilistic

44

qs

qg

Select random points



Path Planning: Probabilistic

45

qs

qg

Connect within short distance



Path Planning: Probabilistic

46

qs

qg

Sample more until connected



Path Planning: Probabilistic

47

qs

qg

Sample more until connected
Path is not optimal.

How could we optimize?



Path Planning

• Reactive

– Local knowledge/feedback

– Fast, but can get stuck if not careful

• Model

– Big picture

– Can be efficient, but takes time

48


	Slide 3: Planning
	Slide 4: How do we choose the action?
	Slide 5: 2D Motion Planning
	Slide 6: Motion Planning
	Slide 7: Model Planning Families
	Slide 8: Motion Planning Families
	Slide 9: Reactive: Bug Algorithms
	Slide 10: Reactive: Bug 1
	Slide 11: Reactive: Bug 1
	Slide 12: Reactive: Bug 1
	Slide 13: Reactive: Bug 1
	Slide 14: Reactive: Bug 1
	Slide 15: When does Bug 1 Fail?
	Slide 16: When does Bug 1 Fail?
	Slide 17: When does Bug 1 Fail?
	Slide 18: When does Bug 1 Fail?
	Slide 19: Reaction with memory: Bug 2
	Slide 20: Reaction with memory: Bug 2
	Slide 21: Reaction with memory: Bug 2
	Slide 22: Model Planning Families
	Slide 23: Dynamic Window
	Slide 24: Dynamic Windows
	Slide 25: Dynamic Windows
	Slide 26: Dynamic Windows
	Slide 27: Model Planning Families
	Slide 28: Path Planning: Visibility
	Slide 29: Path Planning: Visibility
	Slide 30: Path Planning: Visibility
	Slide 31: Path Planning: Visibility
	Slide 32: Path Planning: Visibility
	Slide 33: Path Planning: Visibility
	Slide 34: Model Planning Families
	Slide 35: Path Planning: Grid
	Slide 36: Path Planning: Grid
	Slide 37: Path Planning: Grid
	Slide 38: Path Planning: Grid
	Slide 39: Path Planning: Grid
	Slide 40: Path Planning: Grid
	Slide 41: Grid With Refinement
	Slide 42: Grid With Refinement
	Slide 43: Model Planning Families
	Slide 44: Path Planning: Probabilistic
	Slide 45: Path Planning: Probabilistic
	Slide 46: Path Planning: Probabilistic
	Slide 47: Path Planning: Probabilistic
	Slide 48: Path Planning

