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How do LLMs work?

• LLMs are prediction engines

• LLMs learn by example

– Learn embeddings

– Learn associations
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https://www.youtube.com/watch?v=LPZh9BOjkQs
https://youtu.be/wjZofJX0v4M?si=vuavkxJD6aapRgDA&t=750


What do LLMs learn?
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Embeddings

Goal: represent words so

1. Similar concepts are near 

each other

2. The embedding is also a 

vector carrying its 

meaning
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next word?
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Associations

Goal: what is the most likely 

next word?

What defines likely?

Prior human examples!
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What do LLMs learn?
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By training on prior human 

examples, LLMs learn:

1. Semantics of words 

relative to each other

2. To predict the next word 

from context



It was the best of 

times it was the

How do LLMs work?
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…]

Predictor worst

Embedding



The Visual Variant

• Vision Language Models

– Learn to interpret images by embedding
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What sign 

is this?

The Visual Variant
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Leveraging LLMs for ADS

• Use LLMs to:

– Interpret the world

– Directly resolve requirement ambiguity

– Formalize requirements
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ODD-diLLMma

• ODD compliance checking using LLMs
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ODD-diLLMma

• ODD compliance checking using LLMs

• Operational Design Domain

– Defines environment conditions for ADS

– Requirement for operation
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ODDs are defined in natural language about the world



What is in ODD?
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Is rain different from heavy rain?
How bright is “bright light”?

How “sharp” is a sharp curve?

How close to an intersection counts?

How do we identify these in the field?



ODD-diLLMma

• ODD compliance checking using LLMs

– LLMs can interpret the world

– LLMs have seen previous human judgement 

to decide these ambiguities
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Use LLMs to check sensor data against the ODD!



ODD-diLLMma

• ODD compliance checking using LLMs
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ODD-diLLMma

The ADS cannot 

operate in heavy rain.



ODD-diLLMma
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operate in heavy rain.



ODD-diLLMma

• ODD compliance checking using LLMs
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ODD-diLLMma

The ADS cannot 

operate in heavy rain.



ODD-diLLMma

• Operationalize Natural Language Reqs.

• Over the real world through sensor data

• Mimicking human labeling/decisions
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MOSU

• Multi-modal perception and On-road 

Scene Understanding for mobile robots
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Goal: find a trajectory for the robot that meets the reqs



MOSU

• Multi-modal perception and On-road 

Scene Understanding for mobile robots

• Requirements:

– Traversable terrain

– Obeys traffic laws

– Obeys social cues

25

Personal space is a cultural norm.

Robot must understand social cues 

and cultural norms for people to be 

comfortable around the robot.

VLMs have observed this behavior – can they decide 

the requirement in practice?



MOSU

• Multi-modal perception and On-road 

Scene Understanding for mobile robots
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MOSU

• Multi-modal perception and On-road 

Scene Understanding for mobile robots
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How do we defend these rankings?



MOSU

• Operationalize “unwritten rules”

• How would we formalize these?

• What is the baseline for performance?
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ScenicNL

• Translating real-world crashes into tests
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ScenicNL

• Translating real-world crashes into tests

• Even for formalized requirements, 

testing is hard

– Complex environment

– Many actors
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How do we know what makes a good test case?

How do we write down test cases anyway?



ScenicNL

• Translating real-world crashes into tests

• Scenic

– Probabilistic programming language

– Describes distributions of scenarios

– A test case samples from the distribution

– Ready-made integration with simulators
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How do we write down test cases anyway?

https://scenic-lang.org/
https://scenic-lang.org/


ScenicNL

• Translating real-world crashes into tests

• Humans have been driving for a long time

• Crashes represent difficult scenarios

• DMV has been documenting for years
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How do we know what makes a good test case?



ScenicNL

• Translating real-world crashes into tests
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ScenicNL

• Translating real-world crashes into tests
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Description only captures high-level details



ScenicNL

• Translating real-world crashes into tests
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LLM infers low-level details to generate scenario



ScenicNL

• Translating real-world crashes into tests
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Use the formal language as feedback to guide the LLM



ScenicNL

• Translating real-world crashes into tests
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Where is the requirement? How do we judge the test?



ScenicNL

• Leverage prior natural language

• Generate known-difficult test cases

• Automatically test ADS
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Where can LLMs help?

• Interpret complex sensor data

• Directly decide ambiguous requirements

• Reason through informal/unwritten reqs

• Translate natural language to operation
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