LLMs for Robotics
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* LLMs are prediction engines

 LLMs learn by example
— Learn embeddings

— Learn associations



https://www.youtube.com/watch?v=LPZh9BOjkQs
https://youtu.be/wjZofJX0v4M?si=vuavkxJD6aapRgDA&t=750

What do LLMs learn?
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What do LLMs learn?

Embeddings

Goal: represent words so

1. Similar concepts are near
each other
@ 2. The embedding is also a
vector carrying its

Internet meaning




Embeddings
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What do LLMs learn?

Associations

Goal: what is the most likely

Internet




What do LLMs learn?

Associations

Goal: what is the most /ikely

next word?
@ What defines likely?
Prior human examples!

Internet




Associations
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What do LLMs learn?

By training on prior human
examples, LLMs learn:

Semantics of words
relative to each other

Internet To predict the next word
from context




It was the best of
times it was the

—

[[0.1, 0.9, 0.3],
[0.2, 0.8, 0.7],
[0.6, 0.1, 0.4],
]

Embedding

How do LLMs work?

Predictor

—> Worst




* Vision Language Models
— Learn to interpret images by embedding




The Visual Variant

What sign
is this?

2|

—_—

Embedding
[[0.3, 0.4, 0.3],
[0.2, 0.3, 0.7],
[0.1, 0.1, 0.4],
]

[[0.5, 0.2, 0.3],

[0.2, 0.8, 0.5],
[0.6, 0.1, 0.4],

Predictor

— stop
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 Use LLMs to:

— Interpret the world
— Directly resolve requirement ambiguity
— Formalize requirements




* ODD compliance checking using LLMs




ODD-diLLMma

* ODD compliance checking using LLMs

* Operational Design Domain
— Defines environment conditions for ADS
— Requirement for operation




What is in ODD?
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ODD-diLLMma

* ODD compliance checking using LLMs
— LLMs can interpret the world

— LLMs have seen previous human judgement
to decide these ambiguities

Jse VIS 10 check sensor data against the ODD!
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ODD-diLLMma
* ODD compliance checking using LLMs

ODD-diLLMma

The ADS cannot
operate in heavy rain.
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ODD-diLLMma
* ODD compliance checking using LLMs

The ADS cannot
operate in heavy rain.




ODD-diLLMma
* ODD compliance checking using LLMs
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The ADS cannot
operate in heavy rain.




* Operationalize Natural Language Regs.
* Over the real world through sensor data
* Mimicking human labeling/decisions




MOSU

* Multi-modal perception and On-road
Scene Understanding for mobile robots

Routing Trajectory Generation and Selection Motion Planmng

Traversa bility Scores Confiden ores
Ranking S
o L Subg(?al + A ) . . anking Scores
Selection s . »
® " 3

Trajectory, (v, co)
T T Subgoal T

Decoder Decoder Decoder [ Velocity

o i i } *
Traversability
. GPS-based Se 5 Q ‘ 0 Motion
gmentation VLM
QGIS Routing I acalintion v\T/—v ‘% @ Planners
T o) 4 A

range waypoints, serving as high-level guidance for its trajectory generation system.
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 Multi

VLMs have observed this behavior — can they decide

Scer the requirement in practice?

* Requirements:
— Traversable terrain
— Obeys traffic laws
— Obeys social cues

and cultural norms for people to be
comfortable around the robot.




- D
The I\ trajectories are labeled with numbers from right to left in
sequence. The goal is [< meters at . Rank trajectories for social
navigation.

1| keep away from the groups of pedestrians. The robot has three mode,

Normal, Slow, and Stop. If the people are approaching, the robot needs

to Slow. If people are too close or there is no open space, the robots

Stops.

2. follow the traffic rules, and if going across the street, the robot should
keep in crosswalks.

3. recognize the traffic signs and behave accordingly.

4. avoid off-road terrain for small wheeled robots.

Given the picture, the target is at . Rank the trajectories
by the criteria. output the format: [robot mode|, [ranked numbers|, reason

N /
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* Operationalize “unwritten rules”
 How would we formalize these?
* What is the baseline for performance?




 Translating real-world crashes into tests




ScenicNL

* Translating real-world crashes into tests

* Even for formalized requirements,
testing is hard

— Complex environment




ScenicNL

 Translat

* Scenic
— Probabilistic programming language
— Describes distributions of scenarios
— A test case samples from the distribution
— Ready-made integration with simulators
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https://scenic-lang.org/
https://scenic-lang.org/

ScenicNL

Translating real-world crashes into tests
Humans have been driving for a long time
Crashes represent difficult scenarios
DMV has been documenting for years




ScenicNL

 Translating real-world crashes into tests
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ScenicNL

* Translating real-world crashes into tests

L

CA DMV
Crash Report

Natural Language

Description

Compositional
Prompting
Strategies

Description only captures

CARLA Simulation
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Crash Report

Natural Language
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ScenicNL

* Translating real-world crashes into tests
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ScenicNL

* Translating real-world crashes into tests

L
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LLM
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Example Scenic

Scenic Program

Compiler Feedback

Execution Feedback
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ScenicNL

* Translating real-world crashes into tests
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* Leverage prior natural language
» Generate known-difficult test cases
« Automatically test ADS




* Interpret complex sensor data

* Directly decide ambiguous requirements
* Reason through informal/unwritten reqs
* Translate natural language to operation
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